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The Birthday Problem * 
If you go to a party and there are 35 people there what is the chance that 
two of the people will have the same birthday. 
From Wolfram: The odds are about 81%. The formula is listed below. 
http://www.wolframalpha.com/input/?i=birthday+problem+35+people

In APL you can easily create a program to calculate the formula like this: 

      birthdaysame←{⎕FR←1287 ⋄ 1-(!365)÷(365*⍵)×(!365-⍵)} 

The ⎕FR←1287 tells APL use double precision arithmetic (needed because of 
very large factorial & power calculations). The ⍵ stands for n in the above 
equation i.e. # people at party. In APL factorial symbol(!) goes in front 
of number. Also in APL calculation goes from right to left so the entire 
denominator is calculated first, then the division occurs and finally the 
subtraction from 1. All to right of ⍝ is a comment & not executed. 
Now lets test out the program for the same 35 people at the party. 

      birthdaysame 35     ⍝ so you enter this for 35 people like above
0.8143832389              ⍝ & computer returns .81438 same result as above 

So there is about an 81% chance that two people will have the same 
birthday. Lets try a couple of others and see the percents. 

birthdaysame 25     ⍝ you enter this for 25 people at the party 
0.568699704               ⍝ get ~57% of time at least 2 have same birthday 

birthdaysame¨ 50 66 ⍝ enter this get odds for each(¨) 50 & 66 people 
0.9703735796 0.9980957046 ⍝ 97% for 50 people and 99.8% for 66 people. 

So it looks like once we get to about 66 people odds are almost 100%.  

http://www.wolframalpha.com/input/?i=birthday+problem+35+people
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NOW LETS PLOT THESE PROBABILITIES ** 
for all the #’s of people from 1 to 66. Apl has a special operator called iota 
(⍳) that will easily generate all the numbers for one to any number you want. 

      ⍳6 
1 2 3 4 5 6               ⍝ monadic ⍳ called: index generator makes numbers 1-6 
      10+⍳8 
11 12 13 14 15 16 17 18   ⍝ generates numbers 1-8 first then adds 10 to each. So: 

So here’s code line that calculates/plots odds each(") # of people from 1 to 66. 

plotxy X (Y←birthdaysame ¨X←⍳66) ⍝ for each # 1 to 66(⍳66) and plot 
View PG ⍝ to see it          ⍝ press enter on this line to see plot 

APL has very sophisticated plotting/graphing & with a little effort we can 
make a grid line plot. (Y axis:the odds for # 1-66 by X axis:the # 1-66) 
You can see below for example that for 40 people the odds is about 90%. 
Plotting all possible odd shows a curve not a straight line. 

Here’s the plot fns : To create it type )ed plotxy press enter and type in  

R←{ax0}plotxy data                                     
⍝ plot data:x=col1 y=col2 or x=vector1 y=vector2        
 ax0←0=⎕NC'ax0' ⍝ if no ax0 axes cross at 0
 :If 2=≡data ⋄ data←⍉↑data ⋄ :End                       
 ch.Set'Lines' 1 2 4 5 
 ch.Set¨(ax0,ax0,1)/('Xint' 0)('Yint' 0)('XYPLOT,GRID') 
 ch.Plot data ⋄ PG←ch.Close                             
 R←'View PG ⍝ to see it'

Press ESC when the above lines have been entered and then copy in rainpro. 

      )copy rainpro     ⍝ this will copy in all the fancy APL graphics 
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Two Dice – How Lucky Are You?  ** 
In APL the ? is used to generate random numbers so  

      ?6  ⍝ generates a random number between 1 and 6 each time you do it 
3         ⍝ got a 3 this time 
      ?6 
5         ⍝ got a 5 this time 

To throw two dice you need two 6’s 

      ?6 6 
2 4       ⍝ got a 2 and a 4 

dice←{⍝ Here’s a program to interpret 2 dice throws. To call: dice ?6 6
     ⍵≡6 6:⍵,'Box Cars'     ⍝ if inputs(⍵) match(≡)6 6 display Box Cars
     ⍵≡1 1:⍵,'Snake Eyes'   ⍝ if inputs(⍵) match(≡)1 1 display Snake Eyes
     =/⍵:⍵,'Pair'           ⍝ if inputs(⍵) are equal(=/) display Pair
     7=+/⍵:⍵,'Seven'        ⍝ if inputs(⍵) sum(+/)=7 display Seven
     ⍵,'Unlucky'            ⍝ else display Unlucky 
 } 
     dice ?6 6   ⍝ turns 2 6’s into random numbers between 1 and 6
2 5 Seven        ⍝ result was a 2 and 5 which sums to lucky 7
     dice ?6 6   ⍝ try again 2 random numbers between 1 and 6
2 1 Unlucky      ⍝ result this time was 2 and 1 which matches none of if’s
     dice¨ ?5⍴⊂6 6 ⍝ 5 sets(5⍴) of 2 6’s(⊂6 6), random & check each(¨) set
 2 3 Unlucky  2 2 Pair  6 4 Unlucky  2 3 Unlucky  3 4 Seven ⍝ 5 results

Probability of Two Dice Being Equal *** 
Lets do 5 throws of 2 dice. To do this enclose(⊂) 5 copies(⍴) of two 6’s 
and let the ? turn all 5 pairs of 6’s into random pairs of numbers 1-6: 

      ?5⍴⊂6 6             ⍝ this is APL command and result is on next line 
 6 2  2 1  6 6  6 6  1 4  ⍝ we got five pairs of numbers(notice extra 
space between each pair. Also notice we got two pairs (of 6’s). To make APL  
count matches we put an equal sign(=) between each pair(/¨) like this. 

=/¨?5⍴⊂6 6 
0 0 1 1 0        ⍝ The ones tell us which pairs matched: (pairs 3 and 4) 

Now lets add these 1’s(with +/) getting 2 & divide by 5 to get the odds of 
.4 Finally multiply by 100 to get 40 (for 40% matching pairs) 

100×(+/=/¨?5⍴⊂6 6)÷5 
40                         ⍝ so this time we got 40% matches (2÷5) 

Now lets write a program to do this and call it DiceEqual.  

     DiceEqual←{100×(+/=/¨?⍵⍴⊂6 6)÷⍵}  ⍝ variable omega (⍵) replaces 5 

Now with ⍵ we can try bigger samples and see if the real underlying 
probability is indeed 40%. Lets just go for it with a million throws to get 
a real good idea what the real probability is. 

DiceEqual 1000000     ⍝ throw pair of dice million times get % equal 
16.6442        ⍝ looks like about 16.6% of time dice will match (not 40%). 

Now lets try it 5 times with 100 throws each time(¨): 

DiceEqual¨5⍴100 
27 26 15 16 21          ⍝ got some variability between 15% and 27% matches 

Now lets try it 5 times with 1,000,000 throws each time(¨) 
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DiceEqual¨5⍴1000000 
16.6033 16.6032 16.6488 16.6859 16.6377 ⍝ always got 16.60% to 16.69 

From this we can see the advantage of large random samples. Large samples 
are less variable and they are more accurate. There are actually formulas 
that allow us to see the actual odds. The probability of two independent 
random events occurring together is simply the product of the probabilities 
of each event. In this case each die has 6 sides so the probability of 
getting say a 3 on one throw is 1/6 and the probability of any particular 
pattern such as “3 3” is 1/6×1/6=1/36 which is 1 chance in 36. In our case 
we have 6 different ways to get a pair 1 1,2 2,3 3,4 4,5 5 and 6 6. So the 
odds of getting a matching pair is 6/36 which equals .1666666666. Looking 
back at our 5 1 million throws we can see that a sample size of 1,000,000 
produces some pretty accurate results while the 5 size 100 samples were not 
so good. Just for fun lets try 1,000,000 throws 20 times and average them. 

Mean←{+/⍵÷⍴⍵}  ⍝ Mean program add up #’s(+/⍵) and divide by n(⍴⍵) 
Mean¨ (1 2 3)(8 6)(?1000⍴50) ⍝ Mean each(¨)note:last=1000 rand# 1-50 

2  7  25.015                       ⍝ means for each group of numbers. 
Mean  DiceEqual¨20⍴1000000   ⍝ 20 groups of 1,000,000 pair throws

0.16662385   ⍝ took 17 seconds for my computer but is even more accurate. 

Now lets see if the larger samples are less variable as suggested above by 
looking at some frequency plots. First I need a rounding function to round 
the percents to whole numbers so they can be put in categories. APL has the 
floor function(⌊) which is useful here. But we can’t just use the floor 
function because it always rounds down. 

      ⌊1.2 3.4 1.8 
1 3 1    ⍝ all numbers are rounded down, but we need 1.8 to be rounded up. 

A solution is to add .5 to each number then use the floor(⌊) function 

⌊.5+1.2 3.4 1.8   ⍝ so the #’s become 1.7 3.9 2.3 and  
1 3 2                   ⍝ proper rounding is done. ⌊1.7 3.9 2.3 is 1 3 2 

So here is my round function. It is a little more general than needed here 
so it can round to any number of decimal places by multiplying the number 
by some magnitude of 10, adding .5, finding the floor then dividing it back 
down by the same order of 10. It also has a default(⍺←0) which says to 
round to 0 decimal places if nothing else is specified to the left. 

round←{⍺←0 ⋄ (⌊0.5+⍵×10*⍺)÷10*⍺} ⍝ define the round function
round 2345.45678             ⍝ default round to 0 (whole number)

2345 
1  round 2345.45678            ⍝ round to 1 decimal place 

2345.5 
2  round 2345.45678            ⍝ round to 2 decimal places

2345.46 
      ¯2  round 2345.45678           ⍝ round to 100’s place with ¯2

2300 

Next we need a program to put rounded results into categories: 

Freq←{↑(⍕¨u)(+⌿⍵∘.=u←u[⍋u←∪⍵])}    ⍝ Here is the freq program: 

Freq finds unique(u) input values(⍵), sorts them(u[⍋u]), makes a 
table(rows=⍵ & cols=u) where each row value is matched to each col 
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value(∘.=) so each cell is 1 or 0, then adds up all matches in each 
col(+⌿) to determine the frequencies for each unique #. (+⌿⍵∘.=u)

Now we can do some plotting using the built in barchart icon. Lets create 
500 10’s(500⍴10) and send each(¨) to DiceEqual which creates 500 random 
samples of size 10 of 2 dice tosses and calculates percentage of equal 
pairs for each of the 500 samples of size 10. The percentages are passed to 
round which rounds them to whole numbers and passes them to freq which 
counts up how many times each unique (∪) percentage occurs and creates a 
table of the values and their frequencies passes this table to DATA where 
the values and their frequencies are stored. The plus sign(+) at the 
beginning of line displays 2 row data table that’s stored in data

      +DATA←Freq round DiceEqual¨500⍴10  ⍝ call with 500 samples size=10
 0   10   20  30  40  50    ⍝ this row shows the percentages that occurred 
86  145  147  79  33  10    ⍝ this row is frequency of percentage above it 

FreqBar DATA          ⍝ Now make a Frequency Bar chart of DATA 

We have a range of 0% to 50% matching pairs, showing tremendous variability 
So 0% matches occurred 86 times 10% matches occurred 145 times etc.  
Now lets try 500 samples of size 100 

      +DATA←Freq round DiceEqual¨500⍴100  ⍝ 500 samples of size 100
 6  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26 
1  5  4  11  27  29  31  44  48  47  56  42  46  33  22  22  12   7   7   6 
      FreqBar DATA                         ⍝ Frequency Bar chart of DATA
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A smaller range of 8% to 26% matching pairs but still lots of variability 

Lets try 500 samples of 1,000 

      +DATA←Freq round DiceEqual¨500⍴1000  
 13  14  15   16   17   18  19  20  22 
  2  13  59  149  136  102  31   7   1 
      FreqBar DATA                         ⍝ Frequency Bar chart of DATA 

Even smaller range of only 13% to 22% matching pairs. We are getting close 

Lets try 500 samples of 10,000: 

      +DATA←Freq round DiceEqual¨500⍴10000 ⍝ 500 samples of size 10,000
   16   17  18 
  136  358   6 
      FreqBar DATA                         ⍝ Frequency Bar chart of DATA
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We have a range of only 16% to 18% matching pairs with only 6 at 18 and 
many more at 17 than 16. Thus we are zeroing in on the theoretical value of 
16.66666. A sample size of 10,000 thus almost guarantees a close estimate 
of the true value. Good scientific research thus tries to get large sample 
sizes if possible for this reason. Sampling errors becomes a much smaller 
concern.  

Lets try sample size 10,000 again to see if we’ll have consistent results: 

      +DATA←Freq round DiceEqual¨500⍴10000 ⍝ 500 samples of 10,000 again
 16   17  18 

  158  339   3 
      FreqBar DATA                         ⍝ Frequency Bar chart of DATA 

We have range of 16% to 18% again and other frequencies are very very 
close. Replication is another important part of the scientific method in 
verifying that we are on the right track. Other things we could do to 
verify this result would be for you to try this on your computer which may 
have a different random number generator or you could do the 500×10000 dice 
rolls yourself to check these results. ;) 
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Name The Order Of The Presidents * 
A clueless student faced a pop quiz to match list of 24 US presidents with 
another list of 24 terms(years) of office. Being clueless they had to guess 
every time. On average how many would they guess correctly?_____ 

Since we don’t know the probability formula lets run quick Monte Carlo 
simulations. Use APL random # generator ? to get the avg # you’d get by 
randomly guessing. First simulate match test with only 5 numbers to match. 

      5?5                 ⍝ enter this (use 5 not 44 for the moment) 
5 4 3 1 2                 ⍝ and the numbers 1-5 are rearranged randomly 
      5?5                 ⍝ enter it again 
3 4 2 1 5                 ⍝ and get a different order back 
      (5?5)=(5?5)         ⍝ compare teachers correct order to your guesses 
0 0 1 1 0                 ⍝ and you got 2 right (the 3rd and 4th ones). 
      (5?5)=(5?5)         ⍝ try it again  
0 0 0 0 0                 ⍝ and you got 0 right 
      +/(5?5)=(5?5)       ⍝ lets add them up so we don’t have to count 
1                         ⍝ we got 1 of the 5 right this time. 

Now turn this to a function & run lots of times to see the average result. 

avg←{+/⍵÷⍴⍵}                      ⍝ first write fns to compute average 
presmatch←{+/(⍵?⍵)=(⍵?⍵)}         ⍝ fns counts # matches for ⍵ presidents 
avg presmatch 5                   ⍝ test it for 5 presidents 
0                                 ⍝ no matches 

avg presmatch¨100⍴5         ⍝ test 5 pres 100 times using each(¨) 
0.95                              ⍝ average correct =.95 

avg presmatch ¨100⍴5        ⍝ average this time =1.11  
1.11 
Now run 100,000 times & get more accurate estimate then try 44 presidents. 
      avg presmatch ¨100000⍴5     ⍝ first for 5 presidents  
1.000726                          ⍝ pretty close to 1 
      avg presmatch ¨100000⍴24    ⍝ now for the 24 presidents  
1.000088                          ⍝ interesting basically 1 again. 
      avg presmatch ¨100000⍴125   ⍝ what if there were 125 presidents? 
.99986                            ⍝ still ~1 that is pretty unexpected! 

Conclusion:  
1. Study! Guessing is not going to get you very far on any matching test. 
2. Learn APL, so you can easily figure out what risks are in many things. 

Above example is from Digital Dice:Computational Solutions to Practical 
Probabability Problems by Paul J. Nahin 2008. The book uses MATLAB a fancy 
math/statistics program to show code for this example. Here is equivalent 
13 lines of MATLAB to 1 line of APL: {+/⍵÷⍴⍵}{+/(⍵?⍵)=⍵?⍵}¨1000000⍴24 
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Stock Market With APL: Looking and Predicting **** 

Get data click http://jmb.aplcloud.com/jbgames/Data/DJIACleaned.txt
Then save this file as maybe DJIACleaned.txt somewhere on your computer 
Top line of file has DATE VALUE the rest have the data. import needs this.
      D←import '' ⍝ from APL choose your downloaded file DJIACleaned.txt

⍝ Inspect the data(2004 to 2014) we read from file into namespace D: 
D.⎕NL 2              ⍝ shows all variables in namespace D 

DATE  
VALUE

⍴D.DATE              ⍝ show # of dates (⍴) 
2609                       ⍝ 2609 dates(from 2004 to 2014) 

⍴D.VALUE 
2609                       ⍝ and 2609 stock values each of 2609 dates 

5↑¨D.DATE D.VALUE    ⍝ show 1st 5 dates and then stock values 
20041220 20041221 20041222 20041223 20041224  10661.6 10759.43 10815.89 
10827.12 0                 

↑5↑¨D.DATE D.VALUE   ⍝ ↑change nested vector to matrix to see better 
20041220   20041221    20041222    20041223    20041224 
   10661.6    10759.43    10815.89    10827.12        0

⍝ Clean data: 
⍝ 1)keep only DATEs and VALUEs for VALUEs ≠ 0 (elim Sundays/Holidays)  

⍴¨D.DATE D.VALUE←(⊂D.VALUE≠0)/¨D.DATE D.VALUE  
2518 2518          ⍝ ⍴¨ shows 2,518 values left (down from original 2609) 

plotxy (⍳⍴D.VALUE)(D.VALUE) ⍝ try this to see quick plot 2518 days 

http://research.stlouisfed.org/fred2/series/DJIA/downloaddata
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⍝ Analyze the data 2004-2014 
(⊂D.VALUE=⌊/D.VALUE)/¨D.DATE D.VALUE 

20090309  6547.05    ⍝ lowest stock market day was March 9, 2009 

(⊂D.VALUE=⌈/D.VALUE)/¨D.DATE D.VALUE 
20141205  17958.79   ⍝ highest stock market day was Dec 5, 2014 

⍝ lets get some day to day differences in stocks now 

D.DIF← -2-/D.VALUE    ⍝  (-2-/) takes day to day differences & changes sign 

5↑D.VALUE                ⍝ Show first 5 days of Dows 
10661.6 10759.43 10815.89 10827.12 10776.13 

4↑D.DIF                  ⍝ Show first 4 Dow differences(3 ups & 1 down)  
97.83 56.46 11.23 ¯50.99 

+/D.DIF>150              ⍝ how often Dow up > 150 points in one day 
209                      ⍝ 209 days 

+/0<(¯1⌽D.DIF>150)/D.DIF ⍝ how many times did it rise again the next day 
100                      ⍝ 100 days (from total of 209 rise days) 

avg (¯1⌽D.DIF>150)/D.DIF ⍝ average amount of change day after 150 pt rises 
¯15.26492823             ⍝ ¯1⌽ rotates data by 1 so selects day after rise 

+/D.DIF>0                ⍝ how many times did Dow go up at all in one day 
1355                     ⍝ 1355 days(remember total days was 2609) 

avg D.DIF>0              ⍝ average # days it rose at all 
0.5383392928             ⍝ 1355/2518 equals about 54% (little more than ½) 

avg D.DIF                                    ⍝ Average daily stock change. 
2.827393723                                  ⍝ It rises avgerage <3 a day. 

      (⊂0,D.DIF=⎕←⌊/D.DIF)/¨D.DATE D.VALUE   ⍝ when was the biggest fall  
¯777.68                                      ⍝ 777.68 points lost 
20080929 10365.45                            ⍝ 09/29/2008 fell to 10365.45 

(⊂0,D.DIF=⎕←⌈/D.DIF)/¨D.DATE D.VALUE   ⍝ when was the biggest rise 
936.42                                       ⍝ 936.42 points up 
20081013 9387.61                             ⍝ on 10/13/2008 up to 9387.61 

⍝ But what if market drops 600+ pts? What should you do the next day? 
avg (¯1⌽D.DIF<¯600)/D.DIF ⍝ average rise next day after down day 
291.696 ⍝ so if market down buy next day if up sell next day. Try ¯400 or? 

⍝ Your turn. Noodle around, learn APL and stock market! Happy Investing! 

More Stock Market Calculations*** 
In this section we will play with the stock market some more to see which 
years, months, weeks and days might be best for stocks. First we need to 
break D.DATE up into D.YR D.MONTH D.DAY and D.WKDAY. This is done below by 
enclosing(⊂) # D.DATE which when formated(⍕) is an 8 long character string 
for each date. The first # 20041220 is broken into 3 chars using the 1's in 
the string 1 0 0 0 1 0 1 0 for YR MONTH DAY like this 2004 12 20. YMD is a 
vector of 2518 pieces. The 1st contains 2004 12 20, the 2nd 2004 12 21 etc. 
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(for example ⍎¨1 0 0 0 1 0 1 0⊂⍕20041220 would produce 3 #’s 2004 12 20 
The execute(⍎) each(¨)converts the char strings(from ⍕ back to numbers)) 

D.(YR MONTH DAY)←↓⍉↑YMD←⍎¨¨(⊂1 0 0 0 1 0 1 0)⊂¨⍕¨D.DJ[;1] ⍝split each date 
D.WKDAY←7|-38339-days ¨YMD ⍝ 7 days in week. 2004 12 20 is a Monday=1 
⍝ note: 38339=day before 2004 12 20. days returns days since 1899-12-31  

Now lets see which weekdays, months, years, and weeks of month were best. 

     2⍕{avg(⍵=1↓D.WKDAY)/D.DIF}¨⍳5 ⍝ avg close each week day to 2 decimals 
¯0.64 9.83 1.15 2.30 1.16 ⍝ lowest close=Mon & highest=Tues 

2⍕{avg(⍵=1↓D.MONTH)/D.DIF}¨⍳12 ⍝ so Best months 3 & 4, worst 1 & 6 
¯5.59 2.39 9.30 13.53 ¯3.44 ¯8.87 8.69 ¯1.72 5.54 2.62 4.76 6.92 

     2⍕{avg(⍵=1↓D.YR)/D.DIF}¨  2003+⍳11 ⍝ Best years 2004, 2013 worst 2008
15.18 ¯0.26 6.95 3.19 ¯17.74 6.55 4.56 2.54 3.55 13.78 4.92 

In the next example month is divided into 4 approximately equal segments of 
about 8 days(last segment will be  <8 depending on days in month).  
      2⍕{avg(⍵=1↓⌈D.DAY÷8)/D.DIF}¨⍳4 ⍝ ÷ days 1-31 by 8 & round up(⌈) 
 1.72 2.80 1.10 6.43 ⍝ result last week in month stocks go up much more

The Power of 11 *** 
11 is an important number. It is used as a verification check for many 
things such as 10 digit book bar codes, overcoming skips or scratches on 
CDs and in all sorts of internet communications where static etc causes 
losses. By using 11 lost parts of information can be identified so all the 
data does not have to retransmitted. 
Look at http://www.numberphile.com/ & click on 11-11-11 Eleven link. 

In the book industry when 10 digit bar codes are used the 10 digits are 
always selected in a way so the check number is evenly divisible by 11. 
This is explained on the video link above. Here is an example:  

Here is a barcode: 0 3 1 2 1 5 2 2 7 2 from book Tongue-Fu by Sam Horn. 

Each of these numbers is multiplied by a number from 10 to 1. 

 0  3  1  2  1  5  2  2  7  2 bar code 
10  9  8  7  6  5  4  3  2  1 numbers from 10 to 1 
----------------------------- 
 0 27  8 14  6 25  8  6 14  2 resulting multiplication 

The sum of (0 27 8 14 6 25 8 6 14 2) is 110 which is divisible by 11: 
(110÷11=10) . All 10 digit barcodes on backs of books when multiplied like 
this and added up are divisible by 11. This is called the checksum. 

Here’s how to do this in APL. First enter the program like this: 

barcode11←{0=11|+/⍵×⌽⍳10} 

and test it like this: 

      barcode11 0 3 1 2 1 5 2 2 7 2       ⍝ good bar code 
1                                         ⍝ 1 means good, 0 would be bad 

http://www.numberphile.com/
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computer returns 1 for yes if it is divisible by 11. A bad barcode will 
result in a 0. 

      barcode11 7 3 1 2 1 5 2 2 7 2        ⍝ bad barcode 
0                                          ⍝ 0 means bad, 1 would be good 

Here is how it works from right to left: The program {0=11|+/⍵×⌽⍳10}
generates the numbers 1-10(⍳10), reverses them (⌽) and multiples the 
reversed numbers(10-1) by ⍵(which is the barcode read into the program) 
then sums the resulting numbers up(+/) and finds the residue or 
remainder(|) of division by 11. If the residue equals(=) 0 that means the 
sum is evenly divisible by zero with nothing left over(no residue) and the 
program returns a 1(if true that 0=the residue) or 0(if 0≠ the residue) 

Here is an example using residue(|):  

        13|26 28 30   ⍝ remainder(|) of 13 divided into each # 26 28 30
0 2 4  ⍝ 13 into 26 has no remainder. 13 into 28 residue is 2 and 30 is 4 

Now I was curious how good this barcode check was so I tested it by taking 
a valid(divisible by 11) bar code and randomly changing 1 number and 
checking the new number to see if would indeed fail the divide by 11 check. 

I wanted to check it in a lot of ways to be certain this barcode method 
would catch all slight changes, so I wrote a program to randomly change one 
number in a 10 digit bar code. Here is my program: 

change1←{c[i]←((¯1+⍳10)~((i←?10)⊃c←⍵))[?9] ⋄ c} 

Here's how it works. 1st there are 2 commands, diamond(⋄) separates them. 

c[i]←((¯1+⍳10)~((i←?10)⊃c←⍵))[?9] This part determines a random number to 
insert into random ith position(c[i]←) of my changed string c. First the 
changed string is created by copying the old string (c←⍵). Next, a random 
position to change(i) between 1-10 is made by (i←?10). The code:(¯1+⍳10) 
gets the numbers 1-10 and adds a negative 1(¯1) to each resulting in the 
numbers 0-9. The ~((i←?10)⊃c) part finds the value currently in position i
of c and eliminates(~) it from the numbers 0-9 found by:(¯1+⍳10) so I am 
left with only the 9 new possible numbers to insert in c[i]. The [?9] part 
selects one of these 9 new numbers which is placed in (c[i]←). 

c by itself after the diamond(⋄) simply tells the program to return the 
entire changed barcode(c) back to be displayed when the program is called: 

      X←0 3 1 2 1 5 2 2 7 2 ⍝ for convenience store good barcode in X 
      change1 X 
0 3 1 2 6 5 2 2 7 2         ⍝ #1 random change 5th digit to 6 
      change1 X 
0 3 1 2 2 5 2 2 7 2         ⍝ #2 random change 5th digit to 2(same pos) 
      change1 X 
0 3 1 2 1 5 2 2 2 2         ⍝ #3 random change 9th digit to 2 
      change1 X 
0 3 1 2 6 5 2 2 7 2         ⍝ #4 random change 5th digit to 6(same as #1) 

Now I can check these to see if they fail the divide by 11 check. 
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barcode11 0 3 1 2 6 5 2 2 7 2 
0     

The zero means it failed the check. Indeed all these 1 digit changes fail 
the check. This is promising but I need to do much more checking to be sure 
so I need to simplify things some more to get more efficient. 

First I can put the two programs together to check more quickly like this: 

      barcode11 change1 X 
0 

change1 changes 1 random # of barcode in X & then barcode11 checks that # 

If I wanted to see the change & check it too I could do this. 

      c,'check=',barcode11 c←change1 X 
0 3 1 2 7 5 2 2 7 2 check=0       ⍝ X with 1 # changed(7) fails the check. 

This shows the changed code and that it failed the check. 

However, this is still not a very extensive check, so I did the following 
which does 100,000 random changes on the string(X) and adds up how many 
pass the check. The result was zero, meaning none of the changes pass the 
check, so I feel pretty confident that the 11 barcode check method is a 
good one. Here is the program that does the 100,000 check. 

      +/barcode11¨change1¨ 100000⍴⊂X 
0                            ⍝ none of the 100,000 new strings passes check 

Here is how this works. First I made up 100,000 X strings with the same 
valid barcode. The enclose (⊂) symbol takes the 10 digit string(X) and 
puts in a packet and then 100000⍴ makes 100000 of these packets. The each 
operator (¨) tells the programs to operate on each of the 100,000 X string 
packets. The change1 program grabs each(¨) of these same good string 
packets and makes one random change in each and passes it to the barcode11
program which checks each(¨) of the 100,000 new string packets and returns 
a string of 100,000 0’s and 1’s indicating if each changed string passed 
the divide by 11 check. Finally the string of 100,000 0’s and 1’s is added 
up (+/) and the result is zero which is displayed and tells us none of the 
100,000 random changes was valid. 

Mortgage Calculations **** 
Sample: from Wikipedia http://en.wikipedia.org/wiki/Amortization_schedule

Problem:You want to buy a $100,000 apartment in Waikiki. Should you get a 
loan for 7% for 20 years or 4% for 30 years? Two things are relevant here. 
1) Which loan has lower monthly payment? 2)What is total cost of each loan? 

P=Principle i=monthly interest .07÷12months n=#payments:20yrs×12months 

    P←100000 ⋄ i7 i4←.07 .04÷12 ⋄ n20 n30←20 30×12 ⍝ assign values
    MonthlyPaymentAnuityFormula←{P i n←⍵ ⋄ P×i+i÷((1+i)*n)-1} ⍝ define
    PresValOfAnuity←{A i n←⍵ ⋄ (A÷i)×1-1÷(1+i)*n} ⍝ define 

Explore: Monthly payment for each loan(MP720 and MP430). 

    +MP720 MP430←MonthlyPaymentAnuityFormula¨(P i7 n20)(P i4 n30)  

http://en.wikipedia.org/wiki/Amortization_schedule
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775.2989356 477.4152955 ⍝ So monthly is much less for 4% 30 year loan. 

Explore: How loan and interest payments change over time in these loans 

PresValOfAnuity¨ (MP720 i7 (n20-7×12))(MP430 i4 (n30-7×12))  
79267.91062 86059.4709 ⍝ MP430 owes more after 7 years of payments

P×i7 i4             ⍝ Initial interest paid(Principle×interest rate)
583.3333333 333.3333333 ⍝ Starting interest payment higher for 7% rate

MP720 MP430-P×i7 i4 ⍝ Initial pay to Prin (monthly paym–interest paid)
191.9656023 144.0819621 ⍝ So initially 7% loan is paying off quicker

(P-191.97 144.08)×i7 i4 ⍝ 2nd interest payment (on prin-prev prin pay)
582.2135083 332.8530667 ⍝ each pay less as part of loan is paid each month 

MP720 MP430-582.21 332.85      ⍝ 2nd payment to Principle
193.0889356 144.5652955 ⍝ < interest paid so more to principle 

create fns: )ed amort, press enter, type lines below in edit window, when 
done press ESC & fns created & you back in session ready to try the fns. 

amort←{P i n←⍵ ⍝ monthly payment table= Principle, Interest & Balance
     mp←{P i n←⍵ ⋄ P×i+i÷((1+i)*n)-1}P i n        ⍝ fns mp=monthly payment 
     pval←{A i n←⍵ ⋄ (A÷i)×1-1÷(1+i)∘.*⌽⍳n} ⍝ fns pres value every payment 
     int←i×bal←pval mp i n ⋄ prin←mp-int ⋄ bal←bal-prin  ⍝ get all results 
     lbl←'Period' 'PrinPay' ' IntPay' '  Balance'     ⍝ make column labels 
     tbl←lbl⍪(⍕¨⍳n),(2⍕¨prin),(2⍕¨int),[1.5](2⍕¨bal)    ⍝ put all together 

tbl⍪(⊂'Total Paid'),(2⍕¨+/¨prin int),⊂2⍕0  ⍝ sum principle & interest 
 } 

Answer: call amort & get result. Last row is answer for cost of 7% loan. 

amort P i7 n20  ⍝ call fns: loan payback table 240 rows(20×12).
Period       PrinPay   IntPay   Balance    
1            191.97     583.33    99808.03  
2            193.09     582.21    99614.95  
…………………………………………………………………………………………………. ⍝ rows deleted for brevity 
239          766.33     8.97      770.80  
240          770.80     4.50      0.00 ⍝ final payment and bal=0  
Total Paid   100000.00  86071.74  0.00 ⍝ principle + $86071 interest Ouch! 

Now try: amort P i4 n30. Is 4% cheaper than above $86,071.74 for the 7% 
loan? Please note that though it is stated to be a 7% loan it is 7% every 
year & becomes 86% in 30 years. Borrowing is expensive. Become a Banker! 

Roots of a Polynomial **** 
Given an equation such as y=2x2 +1x –10. what are it’s roots(the x values 
that cause y to be equal to 0). Here is an APL program to find them: 

      quadsim←{a b c←⍵ ⋄ d←(b*2)-4×a×c ⋄ (+/x),-/x←((-b),d*.5)÷2×a} 

quadsim 2 1 ¯10           ⍝ try program equation: y=2x2 +x –10 
2 ¯2.5                          ⍝ so if x=2 or ¯2.5 the equation for y = 0 
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to check the result: substitute 2 and ¯2.5 into the equation 

     x←2 ¯2.5                   ⍝ store roots in x
     (2×x*2)+x+¯10              ⍝ test the equation with values of x. 
0 0                             ⍝ 0 0 result so 2 & ¯2.5 are roots of eq. 

The above check is clear but there is an even easier way in APL. 

APL has a special symbol to insert values into equations of this general 
type. It will also work for higher order equations like 3x5+2x3+x2+5. For 
this equation if x←⍳6 then (x⊥¨⊂3 0 2 1 5) would result in the numbers 1-6 
being inserted in the equation 3x5+2x3+x2+5 resulting in: 11 63 269 809 1935 
3971. This makes it very easy to make y values from the x values or to test 
to be sure the roots found are correct(result=0). 

2 ¯2.5⊥¨⊂2 1 ¯10        ⍝ test x=2 ¯2.5 as roots of 2x2 +x –10 
0 0                           ⍝ 0 0 result so 2 & ¯2.5=roots of: 2x2 +x –10 

But not all equations have 2 roots, some equations have only one root and 
others have only imaginary roots. Here are two APL program to calculate any 
of these possible cases the first labels the result the second just returns 
the roots which can then be passed on to other APL programs. How many roots 
there are can be determined by the sign(×) of the calculation of disc. If 
sign of disc=1(positive) there are two real roots, if sign of disc=0(zero) 
there is one real root and if sign of disc=¯1 there are two imaginary 
roots. Here is the complete program with labeled output for the 3 cases: 

QUAD←{⍝ roots of equation e.g.  QUAD 2 1 ¯10  for: 2×x*2 +1×x –10 
     a b c←⍵ ⋄ d←(b*2)-4×a×c 
     d>0:'2 Real Roots:',(-b+1 ¯1×d*0.5)÷2×a 
     d=0:'1 Real Root',-b÷2×a 
     d<0:'2 Complex Roots',(u,'+',v,'I'),' and',((u←-b÷2×a),'-',(v←((-
d)*0.5)÷2×a),'I') 
 }

To create this fns type )ed QUAD press enter & type lines into editor. 
Lets test it out with the same example then with 2 other equations: 

QUAD 2 1 ¯10  ⍝             ⍝ 2x2 +x –10
2 Real Roots: ¯2.5 2  
      QUAD 3 ¯2 10                ⍝ 3x2 –2x +10 
2 Complex Roots 0.333333 + 1.795054 I and 0.333333 - 1.795054 I 

QUAD 9 12 4                 ⍝ 9x2 +12x +4 
1 Real Root ¯0.6666666667 

Here is a modified version of quadsim that returns only real roots 
unlabeled. This will be more useful to pass to plotting programs: 

quad←{ 
     a b c←⍵ ⋄ d←(b*2)-4×a×c         ⍝ input ⍵ to a b c ⋄ find disc d
     d>0(-b+1 ¯1×d*0.5)÷2×a          ⍝ if disc>0 show 2 roots 
     d=0:-b÷2×a                      ⍝ if disc=0 show 1 root
     d<0:⍬                           ⍝ if disc<0 show nothing(⍬)
 }                                                                 
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Lets try same 3 equations at once. Note: display is APL fns to display 
results so you can see their structure. display is used for display only, 
not when passing results to other programs. 

      display quad ¨(2 1 ¯10)(3 ¯2 10)(9 12 4) 
┌→─────┬─┬─────────────┐ ⍝  
│¯2.5 2│0│¯0.6666666667│ ⍝ 2 roots, no roots, 1 root
└~────→┴⊖┴~────────────┘

Now lets plot equation 2x2 +x –10 so we can see its shape and where the 
roots are. First we need to generate some x plotting values around the 
roots of ¯2.5 and 2 so we can see these critical points clearly in the 
upcoming plot. The program xaroundroots below does that. It takes the two 
roots as input on the right and the number of x values to make on the left. 
It then finds the difference(dif) between the two roots and generates 
⍺(50) x values from the lower root(d) minus the difference to the upper 
root(u) plus the difference so in this case the difference between roots 
¯2.5 and 2 is 4.5 so 4.5 is subtracted from ¯2.5 giving ¯7 which is the 
first x value as can be seen below. Then it takes the upper root which is 2 
and adds 4.5 to that giving 6.5 which is the highest of the 10(⍺) x values. 
If only 1 root it makes a guess at what would be a reasonable range. 

xaroundroots←{⍺←50 ⍝ find ⍺ # of values around roots 
     u d dif←{ ⍝ nested dfns to upper lower and diff 
         2=⍴,⍵:u,d,((u←⌈/⍵)-d←⌊/⍵)           ⍝ dif if 2 roots 
         1=⍴,⍵:u,d,((u←⍵+5⌈|⍵÷2)-d←⍵-5⌈|⍵÷2) ⍝ dif if 1 root 
     }⍵  ⍝ if 1 root near 0 sets to range of about 30 
     du←(d,u)+(-dif),dif 
     (1⊃du)+(¯1+⍳⍺)×(-/⌽du)÷⍺-1 
 } ⍝ make ⍺ x values in range(1⊃du to 2⊃du)

To create this fns type: )ed xaroundroots then enter & type above lines 

2⍕X←10 xaroundroots ⎕←quad 2 1 ¯10 ⍝ show roots & make 10 X values 
¯2.5 2 
 ¯7.00 ¯5.50 ¯4.00 ¯2.50 ¯1.00 0.50 2.00 3.50 5.00 6.50 

2⍕Y←(2×X*2)+X+¯10 ⍝ put above X values into equation to get Y’s
 81.00 45.00 18.00 0.00 ¯9.00 ¯9.00 0.00 18.00 45.00 81.00 

2⍕DATA←Y,[.5]X ⍝ put the X and Y values into a matrix for plotting.
 81.00 45.00 18.00  0.00 ¯9.00 ¯9.00 0.00 18.00 45.00 81.00 
 ¯7.00 ¯5.50 ¯4.00 ¯2.50 ¯1.00  0.50 2.00  3.50  5.00  6.50 

plotxy X Y                     ⍝ Now Plot the 10 points 
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So now lets put this together in a little program so we can do it easily: 

   rootsandplot←{⍺←100 ⋄ ch.Set'Footer' ⎕←ft←quad ⍵ 
                 x←⍺ xaroundroots ft ⋄ y←x⊥¨⊂⍵ ⋄ plotxy x y} 

Notes: this program really has 4 lines separated by diamonds (⋄)  
1. ⍺←100 sets default to make 100 x & y values. If you don’t specify a 
number on the left when you call the program you will get 100 x & y values. 
2. ⎕← displays roots computed by quad program using input equation (⍵) and 
then passes the roots to xaroundroots which finds 100 x values near the 
roots so we will have a good plot around the roots. 
3. y←x⊥¨⊂⍵  puts the found x values into the equation(i.e. ⍵=2 1 ¯10). As 
mentioned above this tricky code is APL equivalent to y←(2×x*2)+x+¯10
4. finally plotxy passes x and y to little plot program I wrote to make a 
pretty display. Here it is: 

  R←{ax0}plotxy data 
⍝ plot data:x=col1 y=col2 or x=vector1 y=vector2

   ax0←0=⎕NC'ax0' ⍝ if no ax0 axes cross at 0
   :If 2=≡data ⋄ data←⍉↑data ⋄ :End 
   ch.Set'Lines' 1 2 4 5 
   ch.Set¨(ax0,ax0,1)/('Xint' 0)('Yint' 0)('XYPLOT,GRID') 
   ch.Plot data ⋄ PG←ch.Close 
   R←'View PG ⍝ to see it' 

To create this fns type )ed plotxy press enter and type lines into editor. 
And enter line )copy rainpro to bring in the fancy APL graphics. 
Now lets the try program rootsandplot for the equation: 2x2 +x –10 

rootsandplot 2 1 ¯10 ⍝ call program shows roots and plots xy data 
¯2.5 2                     ⍝ shows roots. Plots 100 xy value pairs 
View PG ⍝ to see it     ⍝ just press enter on this line to see plot 



By Jerry Brennan Page 19 of 68 5/28/2020

Notice where the roots(y=0) ¯2.5 and 2 are on the plot. 

This program will plot data for any polynomial with 2 real roots simply by 
entering the parameters for x2 x1 and x0.  

Now lets try: y=15x2 + 8x + 0 and request only 50 values to plot. 

      50 rootsandplot 15 8 0     ⍝ plot 50 xy points for y=15x2 + 8x + 0 
¯0.5333333333 0                  ⍝ shows 2 roots. 
View PG ⍝ to see it     ⍝ just press enter on this line to see plot

Again notice where roots are and see that xaroundroots centers plot nicely 

Quadric Equations and Functions ***** 
Quadric equations are of the general form y=ax*2 + bx +c . The above 
program only works when there are two roots and it does not tell us either 
vertices or minimums of the function. So here is a more complete program. 
Lets plot such an equation in APL. Lets try y=3x*2 + ¯6 + 2 . Here is a way 
to plot such an equation in APL by entering just a b and c into the 
program. 

QuadPlot 3 ¯6 2 
View PG ⍝ to see it 
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The program footnote tells us that the function has a minimum at x=1 y=¯1 
and that it crosses the x axis twice, once at .423 and again at 1.577. 
Here is the QuadPlot program:  

To create this fns type )ed QuadPlot press enter & type lines into editor.

QuadPlot(a b c);x;y;xint;xvert;yvert;mm;rng;ft 
⍝ Plot quadratic eq: QuadPlot 2 ¯1 ¯7  for: 2x*2 -x -7 (a=2 b=¯1 c=¯7) 

 mm←((1+a<0)⊃'F min' 'F max'),' at x y='  ⍝ "max" if a<0 otherwise "min" 
 xvert←-b÷2×a                             ⍝ xvert=where y is min or max 
 yvert←xvert⊥¨⊂a b c                      ⍝ solve eq for yvert using xvert
 xint←,quad a b c                         ⍝ quad formula for x intercepts
 rng←⍎(1+⍴xint)⊃'0,xvert' '0,xint' 'xint' ⍝ find range of x values to plot
 :If rng≡0 0 ⋄ rng←¯10 10 ⋄ :End          ⍝ fix range if at 0 0 
 x←xaroundroots rng                       ⍝ find good x values to plot
 y←x⊥¨⊂a b c                              ⍝ solve eq for y using x values
 ft←'y=ax*2+bx+c  a=' 'b=' 'c='mm'xintcepts=',¨a b c(3⍕xvert 
yvert),⊂3⍕xint 
 ch.Set'Footer' ft  
 plotxy x y 
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Integration: Find Area Below Any Equation in 1 Line APL *** 
Define the fns: 

SIMPSON←{b e n←⍺ ⋄ X←b+(d←(e-b)÷n)×0,⍳n ⋄ d×+/((1⌽1 1,(n-1)⍴4 2)×⍎⍵)÷3} 

Call fns: 0=begin interval 1=end interval 6=# rectangles X*2 is equation 
to integrate(⍵). 

      0 1 6 SIMPSON 'X*2' 
0.3333333333 

Here are the 2 actual fns with extensive comments in green. Actual code is 
only the white. You can use SIMPSON and tell fns how many rectangles you 
want or ADSIM if you want to set accuracy of result & the fns will figure 
out how many rectangles are needed for the desired level of accuracy. 
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Below is online version in action. Go to jmb.aplcloud.com & choose 
IntroLive button. To Practice using live APL paste line below to Input:  

3.1 6 5555 SIMPSON '|(.3×X*3)×1○X' ⍝ .3×X*3 × SinX from 3.1-6 5555 rects 

As you can see the correct answer to 7 decimal places is 64.05415978 as 
found by ADSIM. It requires a lot of very small rectangles added together 
to be that accurate. SIMPSON takes more than 555555 such rectangles to be 
accurate to only 4 decimal places and it overfills the workspace if I try 
for more. The much more efficient ADSIM however can easily find the answer 
to 7 decimal places.  
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To see a plot of the area cut/paste line below to Input: field on web page 
and press Calc below it. 

3.1 6 .000001   PlotAreaUnderCurve '|(.3×X*3)×1○X' 

Here is the program PlotAreaUnderCurve that calls ADSIM & plots the curve: 

The above problem is interactively discussed in excellent detail at 
http://www.intmath.com/blog/mathematics/riemann-sums-4715.  

Email me at jbrennan@hawaii.rr.com if you want to learn more. OR 
1)go to jmb.aplcloud.com  
2)press IntroLive button  
3)choose menu choice called: 

Basic Statistics *** 

      Mean←{(+/⍵)÷(⍴⍵)}            ⍝ sum(+/) of #'s divided by #(⍴) of #'s 
      Max←{⌈/⍵}                    ⍝ maximum of numbers(⌈/)

http://www.intmath.com/blog/mathematics/riemann-sums-4715
mailto:jbrennan@hawaii.rr.com
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      Min←{⌊/⍵}                    ⍝ minimum of numbers(⌊/)
      Range←{(max ⍵)-(min ⍵)}      ⍝ range - max minus min of numbers 
      Sort←{⍵[⍋⍵]}                 ⍝ sort numbers up(⍋). ⍒ would sort down
      Median←{mid←(1+⍴s←sort ⍵)÷2 ⋄ Mean s[(⌊mid)(⌈mid)]} 
      Variance←{(+/(⍵-avg ⍵)*2)÷(¯1+⍴⍵)} ⍝ sample variance 

Sdev←{(variance ⍵)*0.5}      ⍝ sample standard deviation  
Skew←{(+/(⍵-Mean ⍵)*3)÷(¯1+⍴⍵)×(Sdev ⍵)*3} ⍝ skew (+=right -=left) 

      Kurtosis←{(+/(⍵-Mean ⍵)*4)÷(¯1+⍴⍵)×(Sdev ⍵)*4} ⍝ flatness -+ normal 

The median is defined as the middle number if there are an odd # of #'s.  
If there are an even # of numbers its the average of the two middle 
numbers. The above median fns first sorts the data into s and finds the 
midpoint which is either a whole number position for odd # of #'s or a 
position 1/2 way between the two middle positions(mid) if there are an even 
number of numbers. After the diamond(⋄) the fns averages the 1 or two 
middle numbers s[(⌈mid)(⌊mid)]. Lets try a couple to see how it works. 

Median 5 6 8 7                ⍝ s=5 6 7 8, mid=2.5, ⌊mid=2, ⌈mid=3  
6.5                                 ⍝ s[2 3]=6 7, average of 6 7=6.5 

Median 9 5 8                  ⍝ s=5 8 9, mid=2, ⌊mid=2, ⌈mid=2 
8                                   ⍝ s[2 2]=8 8, average of 8 8=8 

Freq←{↑(⍕¨u)(+⌿⍵∘.=u←sort ∪⍵)}  ⍝ define a frequency count fns Freq 
      Freq num←?50⍴6        ⍝ call Freq with 50 rand(?) #’s(1-6) in num 
 1   2  3  4   5  6         ⍝ here are the label #'s in row 1 of freqs
 9  10  7  7  11  6         ⍝ here are the frequencies in row 2 of freqs

The Freq function: u is sorted unique(∪)values of the 50 rand #'s(NUM) 
#'s are counted into unique categories 1-6 (+⌿⍵∘.=u) & labeled(⍕¨u) 

FreqBar Freq ?50⍴6  ⍝ make 50 rand #’s 1-6, turn into freqs, plot 

Mode←{↑(⊂(f>1⌽f)∧(f>¯1⌽f))/¨v f←0,¨(↓Freq ⍵),¨0} ⍝ Mode uses Freq
      Mode NUM  ⍝ call mode program with same num used above for freq. 
 2   6   ⍝ two modes one at 2 one at 6 
11   8   ⍝ mode at 2 has a frequency of 11. mode at 6 has frequency of 8. 
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Modes are defined as any frequencies that are higher than frequencies 
immediately before or after it or are at either end and are higher than the 
one frequency that is either before it or after it. The program finds the 
frequencies. in this case for values 1-6:9 10 7 7 11 6 and puts 0's before 
and after the frequencies then compares by rotating(⌽) f to values before 
and(∧) after and if it greater than both it is a mode as can be seen here: 

↑v f (1⌽f) (¯1⌽f)   ⍝ This displays v f 1⌽f & ¯1⌽f as a 4 row table 
0  1  2  3  4  5  6 0     ⍝ v are the values with 0's on each end 
0  9 10  7  7 11  6 0     ⍝ f 10 & 11 only ones greater than(>) 1⌽f & ¯1⌽f 
9 10  7  7 11  6  0 0     ⍝ 1⌽f 7 & 6 are less that 10 and 11 above them 
0  0  9 10  7  7 11 6     ⍝ ¯1⌽f 9 & 7 are less that 10 and 11 above them  

Kendall’s Tau : Rank Order Correlation **** 
Here is some code for first example and then another example I found 
online. I also computed z score for it.  
First your data in a1 and a2, then call the Ktau program. If two raters 
rated 8 bands numbered 1-8. Ktau computes how similar the rank orders are 
by counting concordances and discordances. 

First put the bands in order by the ranks of the first rater a1. So a1 goes 
1-8. Rater a2 had a different ordering. The both agreed in band 1. but 
rater a2 saw a1’s second best band as his 3rd best and a2 saw the 6th band 
as his second best. Now we determines concordances and discordances. 

a1←1 2 3 4 5 6 7 8 
      a2←1 3 4 5 2 6 7 8 
    ⍝  c=7 5 4 3 3 2 1 0  so c=25 
    ⍝  d=0 1 1 1 0 0 0 0  so d= 3 

So looking at the a2 numbers band 1 had 7 concordances(7 numbers after it 
that were higher and 0 discordances(0 numbers after it that were lower). 
For a2 band 2 had 5 concordances(5 numbers after it that higher) and 1 
discordance(1 number after it that lower). Continuing for the other bands 
and adding them all we get 25 concordances and 4 discordances. The Ktau
formula uses c and d like this. Ktau=(c-d)÷(c+d). The Ktau fns below does 
this using a sub fns call cd in [1] which calls itself(using ∇) repeatedly 
for each rank counting the numbers below that rank that are concordant or 
discordant Both c and d are calculated by fns cd in [2] by calling it with 
either < or > as the left argument. [3] calculated Ktau and counts samples 
size(n1). [4] calculates significance level(z). 

     ∇ Ktau←{⍝ c=concordant d=discordant 
[1]        cd←{1=⍴⍵:0 ⋄ (+/(1↑⍵)⍺⍺ 1↓⍵)+∇ 1↓⍵} 
[2]        c d←(<cd ⍵)(>cd ⍵) 
[3]        tau←(c-d)÷(c+d) ⋄ n1←×/¯2↑⍳⍴⍵ 
[4]        tau,z←(3×tau×n1*0.5)÷(2×5+2×⍴⍵)*0.5}

      a1 Ktau a2          ⍝  so Ktau=(25-3)÷(25+3)=.7857 
0.7857142857 2.721794126  ⍝  so Ktau=0.7857 z=2.7218  

      ⍝ here is one more example 
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b1← 1  2 3 4 5 6 7 8  9 10 11 12 
      b2← 2  1 4 3 6 5 8 7 10  9 12 11
     ⍝ c=10 10 8 8 6 6 4 4  2  2  0   so c=60 
     ⍝ d= 1  0 1 0 1 0 1 0  1  0  1   so d= 6  
      b1 Ktau b2                      ⍝ thus Ktau=(60-6)÷(60+6)=.8182 
0.8181818182 3.702917599  ⍝  so Ktau=0.8182 z=3.7029  

Linear Regression: compute Best Fit line from raw data **** 
sd corr LinReg LinRegPlot  
(see page 332 of Algebra 1 book) see also ch.Set 'Order' 
Programs:sd:standard deviation corr:correlation Reglin:linear regression 

 sd←{((+/(⍵-Mean ⍵)*2)÷¯1+⍴⍵)*0.5} ⍝ define program for standard deviation 
corr←{ma mw←Mean¨⍺ ⍵ ⋄ (+/(⍺-ma)×(⍵-mw))÷((+/(⍺-ma)*2)*0.5)×((+/(⍵-
mw)*2)*0.5)}                             ⍝ define program for correlation 
 RegLin←{'y=ax+b  a=' 'b=' 'r=' 'r*2=',¨(⍵⌹⍺∘.*1 0),(⍺ corr ⍵)*1 2}   

   R←x RegLinPlot y;yline;foot;a;b  ⍝ define linear regression plot 
    ch.Set'Head' 'Linear Regression Plot' 
    a b←y⌹⌽↑1,¨x               ⍝ determine regression line formula
    yline←(a×x)+b              ⍝ get regression line points
    ch.Set'Footer'(x RegLin y) ⍝ get eq,r r*2 for footer label 
    ch.Set'XYPLOT,GRID'        ⍝ set up the plot 
    ch.Plot⍉↑x yline           ⍝ plot regression line
    #.ch.SetMarkers'Bullet'    ⍝ ch.∆markers shows other symbols
    ch.Scatter⍉↑x y            ⍝ data points as Bullets
    PG←ch.Close 
    R←'View PG ⍝ to see it' 

To create this fns type )ed RegLinPlot press enter & type above lines into 
editor. 

        X←0 1 2 3 4 5                    ⍝ X raw data
Y←27.9 28.7 30.2 32.5 33.1 34.3  ⍝ Y raw data

        X RegLinPlot Y                   ⍝ do regression
View PG ⍝ to see it 
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So the above equation is: Y=1.36X + 27.7 and correlation=.99 

If you had only two points to plot this program would just find the perfect 
line equation between the two points and the correlation would be 1.0. The 
Domino (⌹) used in line [2] above is very powerful. It can be used to 
solve multiple regression problems where you are fitting multiple sets of 
data and nonlinear regression. It can also be used to solve sets of 
simultaneous equations.  
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Solve Set of Equations Easily with APL (Cons⌹Coefs) **** 

Let me explain how Cons⌹Coefs in APL to solves simultaneous equations.
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This exact same method of solving equations is also used for Regression 
Analysis upon which much of statistics is based. The Constants are the 
dependent variable and the Coefficients are the independent variables used 
to predict dependent variable. The Solutions is the prediction equation. 
The ⌹ operator does it all in APL from simple regression to multiple and 
nonlinear regression. Lets try a simple example first. 

The Horse & Mule Problem1 (WORDS TO ALGEBRA TO APL) *** 
Here’s a problem to translate from words to algebra to APL. A horse & a 
mule, both heavily loaded, were going side by side. The horse complained of 
its heavy load. “What are you complaining about?” replied the mule. “If I 
take 1 sack off your back, my load will become twice as heavy as yours. But 
if you remove 1 sack from my back, our loads will be the same.” Now wise 
mathematician, 1st show me algebra then solve with APL for # sacks 
for horse and mule?" Use: H=horse sacks and M=mule sacks. 

If I take one sack, (from horse=H) H-1 

my load (mule=M) M+1 

will be twice as heavy as yours. 1)      M+1=2(H-1)

But if you take one sack from my back(M) M-1 

Your(H) load H+1 

will be the same as mine. 2)    M-1=H+1

We have reduced the problem to a system of 2 equations in 2 unknowns: 
1 )  M + 1 = 2 ( H - 1 )  1) 3=2H+¯M 
2)         M-1=H+1 

Now rearrange 1) & 2) for APL: 
constants left & coefficients right 2) 2=¯H+M 

Here’s APL code from previous section: Solutions←Constants ⌹ Coefficients

3 2⌹2 2⍴2 ¯1 ¯1 1   ⍝ APL Constants=3 2 Matrix Coefficients=2 2⍴2 ¯1 ¯1 1
5 7                 ⍝ Solution: H(horse)=5 sacks and M(mule)=7 sacks. 

So if mule took 1 sack from horse mule would have 8 & horse 4, 
and if mule gave 1 sack to horse they would both have 6 sacks. 

1
 From Algebra Can Be Fun by Ya I Pearlman 1936 
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Linear Quad & Cubic Regression ***** reg←{x y←⍵ ⋄ y⌹x∘.*⌽0,⍺}
First some data for X and Y (used throughout the following examples) 

      X←¯2 ¯1 0 1 2  ⋄ Y←0.25 0.5 1 2 4 

      RegLin←{(⊂'y←(a×x)+b'),('a←' 'b←' 'r=' 'r*2=',¨⍕¨(⍵⌹⍺∘.*1 0), 
        (⍺ corr ⍵)*1 2)} ⍝ define Linear Regression function(all one line) 
      X RegLin Y         ⍝ call Linear Regression function 
y←(a×x)+b  a← 0.9  b← 1.55  r= 0.93  r*2= 0.87 ⍝ linear results 

      RegQuad←{(⊂'y←(a×x*2)+(b×x)+c'),('a←' 'b←' 'c←',¨⍕¨(⍵⌹⍺∘.*2 1 0))} 
       X RegQuad Y                  ⍝ call quadratic regression function 
y←(a×x*2)+(b×x)+c  a← 0.29  b← 0.9  c← 0.98   ⍝ quadratic results

      RegCube←{(⊂'y←(a×x*3)+(b×x*2)+(c×x)+d'), 
        ('a←' 'b←' 'c←' 'd←',¨⍕¨(⍵⌹⍺∘.*3 2 1 0))} ⍝ (all 1 line again)
       X RegCube Y                  ⍝ call cubic regression function 
y←(a×x*3)+(b×x*2)+(c×x)+d  a← 0.06  b← 0.29  c← 0.69  d← 0.98 

Notice the similarity in the above 3 functions.  
Regression coefficients Equation APL Domino Operator 
Linear: a b                 y←(a×x)+b     ⍵⌹⍺∘.*1 0 
Quadradic only               y←(a×x*2)+b     ⍵⌹⍺∘.*2 0 
Lin/Quadradic: a b c         y←(a×x*2)+(b×x)+c   ⍵⌹⍺∘.*2 1 0 
Lin/Quad/Cubic a b c d y←(a×x*3)+(b×x*2)+(c×x)+d ⍵⌹⍺∘.*3 2 1 0 
But there is a simpler way in APL. Since the 3 programs are so similar it 
is possible to write one function that can do linear quadric and cubic and 
actually it can go beyond cubic if you wish. Here is the function:  

reg←{x y←⍵ ⋄ y⌹x∘.*⌽0,⍺}    ⍝ does all types of simple regressions
       2⍕1 reg X Y                  ⍝ 1 is x1 linear regression 
0.9 1.55                            ⍝ a← 0.9  b← 1.55
       2⍕2 reg X Y                  ⍝ 2 is x2 quadratic regression 
0.29 0.98                           ⍝ a← 0.29  b← 0.98 
       2⍕3 reg X Y                  ⍝ 3 is x3 cubic regress 
0.24 1.55                           ⍝ a← 0.24  b← 1.55

2⍕¨(1)(1 2)(1 2 3) reg¨ ⊂X Y  ⍝ lin, lin & quad, lin & quad & cubic 
0.9 1.55  0.29 0.9 0.98  0.06 0.29 0.69 0.98 ⍝ see 3 equations below 
  ⍝ y=.9x+1.55    y=.29x2+.9x+.98    y=.06x3+.29x2+.69x+.98 

If you wanted little better labeling of these equations pass them to this: 
RegEq function 
      RegEq←{⍺←⍳¯1+⍴⍵ ⋄ 1↓⊃,/(⊂'+('),¨((⍕¨⍵),¨(⊂'×X*')),¨(⍕¨⌽0,⍺),¨')'} 

↑ lab RegEq¨(lab←(1)(1 2)(1 2 3))reg¨⊂X Y No 2⍕ so show all decimals 
(0.9×x*1)+(1.55×x*0)                                           ⍝ linear
(0.2857142857×X*2)+(0.9×X*1)+(0.9785714286×X*0)                ⍝ lin/quad
(0.0625×X*3)+(0.2857142857×X*2)+(0.6875×X*1)+(0.9785714286×X*0)⍝ lin/q/cub

Any 1 these equations could be easily cut, pasted & compared in plotxy.  

plotxy X (Y←(0.2857142857×X*2)+(0.9×X*1)+(0.978571486×X*0))⍝ lin/quad plot 
View PG ⍝ to see it 
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Actually any # of these equations could easily be plotted on the same plot. 
An example of plotting more than one equation on the same plot follows with 
automatic labeling of the lines also. All you have to do is enter your x 
range and your equations on line below beginning with xandys.

Plotting 3 Exponential Functions to Compare **** 
Here is some data for three exponential functions from page 521 of Algebra 
I by McDougal Littell which I show you how to easily plot all at once. 

X←¯3+⍳5 y1←2*X y2←3×2*X y3←¯3×2*X 
¯2 0.25 0.75 
¯1 0.5 1.5 ¯1.5 
0 1 3 ¯3 
1 2 6 ¯6 
2 4 12 ¯12 

Here is how this data for X range of ¯2 to 2(X←¯3+⍳5) and equations: y1 y2 
y3 are computed inserting the X values into each of the equations 
(⍎¨xandys). The text equations are put into the key for display in the 
plot which is called in the 3rd line below(plotxy). This example plots 3 
lines but any number of equations of any complexity to could be plotted. 

      xandys←'X←¯3+⍳5'  'y1←2*X' 'y2←3×2*X'  'y3←¯3×2*X' 
      ch.Set 'Key' (1↓⊃,/',',¨1↓xandys) 
      plotxy ⍎¨xandys 
View PG ⍝ to see it 
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Plotting in General in APL * 
There is a very extensive plotting library which can do virtually any plot 
you want. In addition virtually everything can be customized. Fonts and 
colors can be changed, multiple axes are available, plots can be placed on 
top of each other, specific areas can be notated or colored etc. To see 
examples of all of the above and more simply click on each of the following 
commands. First load rainpro the press enter any of the lines below it.   

)load rainpro  ⍝ to load in the following graphics 

    Samples.Slideshow 3 ⍝ Run through selected samples (with 3s delay)
    ActiveCharts.Active ⍝ Simple illustration of drawing a chart on a form
    ActiveCharts.Drill  ⍝ Sample drill-down application with Dyalog Gui
    ActiveCharts.Edit   ⍝ Sample data editor using draggable markers

Multiple Regression 
In the previous examples there was one X variable, which predicted one Y variable. In the 
simultaneous equation examples there was one perfect solution. In the linear, quadratic and cubic 
models there was one X variable and we determined a best fit equation to predict Y. In multiple 
regression there will be a number of different X variables that are used together to find a prediction 
equation for Y. In multiple regression X is a matrix with different columns for different X variables all 
used to predict the Y variable. What different people will wear tomorrow depends upon many things 
such as their income, what they wore today, chance of rain, temperature, who they are trying to 
impress, how steep the mountain is etc. The calculation in APL is basically the same. Lets look at an 
example.  
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Alien Attack * 
The human flesh eating Martians are coming, but fortunately we have a very 
expensive ray gun, which can destroy their one giant saucer. Unfortunately 
the saucer is very elusive and the gun only destroys the saucer 1/3 of the 
time. Fortunately a high paid consultant suggested that the solution is to 
build 3 ray guns because 1/3 plus 1/3 plus 1/3 comes out to .9999 so 99.99% 
of the time the saucer would be destroyed. Unfortunately this is not 
correct. So we need your help to save the human race. If not 3 how many ray 
guns would be needed to be 95% certain to save the human race?. What about 
99% certain? I was a little bit nervous about this and being wrong might 
have some huge negative consequences for us humans so I resorted to the 
Monte Carlo technique. The trick is to translate this into APL code.  

If 3 guns fired randomly using ?3 3 3 APL returns 3 random numbers between 
1 & 3. Using 1 for a hit & 2 & 3 for misses gives us our 1/3 for each gun. 

?3 3 3 
2 1 2  ⍝ so the second gun destroyed the saucer but I noticed no 3’s 

So this looks dangerous to me. So we need some more checking. I only want 
to find 1’s so I modified my code a little. 

1=⎕←?3 3 3 ⍝ ⎕← assigns random #’s to output and then 1= matches 
3 1 2            ⍝ these are the random gun shots show by ⎕←
0 1 0            ⍝ this shows that gun 2 was=1 and it destroyed the aliens 

Now all I really care about is if 1 or more guns=1 and aliens are dead so I 
use ∨/ which, like +/ puts a plus between each number, ∨/ puts an or(∨) 
between each number and result is 1 if gun 1 or gun 2 or gun 3 = 1 
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otherwise ∨/ result is zero. So in examples below none of 3 3 2 = 1 so 
result is 0. But in 2nd example one or more of 1 2 1 = 1 so result is 1.  

      ∨/1=⎕←?3 3 3 
3 3 2                   ⍝ none of shots match 1 
0                       ⍝ so saucer gets through and earth is lost 

∨/1=⎕←?3 3 3 
1 2 1                   ⍝ two shots=1 
1                       ⍝ so saucer definitely destroyed 

Now lets create a program and run it a few times and average the results. 

avg{∨/1=?⍵⍴3}¨1000000⍴3   ⍝ Remember avg←{(+/⍵)÷⍴⍵}.
0.704073                ⍝ so on average 3 guns kill saucer 70% of time. 

The ¨1000000⍴3 makes up a million 3’s which are passed one at a time 
using(¨) to the program to run 1 million times. ⍵ is the right argument to 
the unnamed function, The 3 is for 3 guns in this case so ⍵⍴3 becomes 3⍴3 
which becomes 3 3 3. (avg{1∊?⍵⍴3}¨?1000000⍴3 uses membership(∊) works too) 

Lets try 4 guns and our fns using membership(∊). Is 1 a member of ?4⍴3 

      avg{1∊?⍵⍴3}¨1000000⍴4     ⍝ 4 guns each hit saucer 1/3 of time. 
0.802378                        ⍝ 4 guns better but I want 95% or better. 

Please figure out # guns needed to be 95% certain & let me know. Thanks!

Alien Attack Two ***** 
Wonderful we destroyed the saucer, but unfortunately the Martians came up 
with a new strategy. They built a zillion(more or less) small saucers. 
Fortunately they put an id number each saucer from 1 to N and we can see 
some of saucers coming and can read the id numbers on some of those. 
Unfortunately the id numbers are not in any particular order, they are 
random and further they are in binary not the base 10 we are used to. 
Fortunately APL has a built in function to change numbers from any base to 
and from base 10 and I have an idea of a way to estimate N from a sample 
(n) of random numbers from N.  

First lets review number bases. In base 10 we have 10 digits for the first 
10 numbers then we repeat using the same 10 digits like this: 
0 1 2 3 4 5 6 7 8 9     10 11 12 13 14 15 16 17 18 19     20 21 22 23 etc 
In binary we only have two digits 0 and 1 so the repeating happens faster. 
0=0 1=1  2=10 3=11  4=100 5=101 6=110 7=111  8=1000 9=1001 10=1010 11=1011 
In APL decode (⊥) and encode (⊤) do these conversions and more for us.  

First let’s decode(⊥) binary numbers to decimal. 

2⊥1 0             ⍝ binary  10 notice spacing of 1 0 
2                         ⍝ decoded bin  10 decimal answer=2 (see above) 

2⊥1 0 0 1         ⍝ binary  1001  
9                         ⍝ decoded 1001 decimal answer=9 (see above) 

2⊥¨(1 0)(1 0 0 1)   ⍝ do both numbers at once. 
2 9 

Decode(⊥) can work with other bases also for example days hours & minutes 

24 24 60⊥1 2 45    ⍝ convert 1 day 2 hour and 45 minutes to minutes 
1605                     ⍝ (1day=24hr×60min)+(2hr×60)+45min = 1605 minutes 
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And here’s an example assembling a decimal number from it’s components: 

10⊥1 3 5 2               ⍝ we have 1 thousand 3 hundreds 5 tens 2 ones 
1352                     ⍝ which becomes 1352 

Now let’s see how encode(⊤) works:(Note ⊤ needs multiple left side #’s) 

10 10 10 10⊤1352   ⍝ break number 1352 back down into decimal parts 
1 3 5 2                  ⍝ means:1 thousand 3 hundreds 5 tens 2 ones 

24 24 60⊤1605       ⍝ break 1605 minutes into days hours and mins 
1 2 45                   ⍝ 1 day 2 hours and 45 minutes 

Now one further thing before we get on to the problem. In converting a 
decimal number to binary we need to know how many 2’s to put to the left of 
encode. The answer is: 1+the floor of the base 2 log of the number. In APL 
this is found like this.  

1+⌊2⍟9                ⍝ 1 plus floor(⌊)of base 2 log(⍟) of # 
4                        ⍝ so 9 is 4 digit binary number(as we saw above)

1+⌊2⍟1000000          ⍝ 1 million requires 20 digits. 
20 

So Here is how to do it for these two examples 9 and 1 million: 

((1+⌊2⍟n)⍴2)⊤n←9 
1 0 0 1                                 ⍝ 9 in binary 4 digits needed 

((1+⌊2⍟n)⍴2)⊤n←1000000 
1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 ⍝ 1 million in 20 binary digits 

We will be using this a bit so lets make it easy and write a function. 

Dec2Bin←{((1+⌊2⍟⍵)⍴2)⊤⍵} 

Ok now lets get to work on the saucers. Lets assume there are 1 million 
saucers (N=1000000) and we get the id’s for random 100 Saucers(n=100) 

N←1000000 ⋄ n←100    or N n←1000000 100 would also work 
id←Dec2Bin¨n?N  ⍝ get 100 random id's from million & make binary 

Now here’s the magic formula to predict N(the total # of saucers) from a 
sample. In this case we already know N so we can see how well it works. 
Here’s the formula in conventional math notation: Nest=(n+1)/n × Max(id)-1 

Now the equation in APL with the added conversion from binary to decimal.  

+Nest←(((n+1)÷n)×(⌈/2⊥¨id))-1  ⍝ Nest estimates N(total saucers) 
996750.83                            ⍝ pretty close to a million 

Note max is ⌈/ and 2⊥¨id converts each bin id to decimal id. Finally an 
extra set of parentheses is needed as APL goes right to left with no order 
of operations rules so to make the subtraction(-1) goes last & rest needs 
parentheses around it. 

Now lets put all this together in a function that we can play with to see 
if we can count the saucers with a smaller sample than 100. So lets put two 
functions together into a third function so what we are doing is clear. 

SaucEst←{(((1+⍴,⍵)÷⍴,⍵)×(⌈/2⊥¨⍵))-1} ⍝ est N ⍵=n random bin id’s 
SaucDo←{SaucEst Dec2Bin¨⍺?⍵}         ⍝ generate and estimate N 
100 SaucDo 1000000          ⍝ call program ⍺=n(sample) ⍵=N(population) 

984090.48                       ⍝ estimate from n=100(actual=1 million) 
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Now lets run it 500 samples of size 100 and get the average. 

      avg 100{⍺ SaucDo ⍵}¨500⍴1000000 
999218.1065 
      avg 100{⍺ SaucDo ⍵}¨500⍴1000000 
1000095.813 

So on the average it is pretty much perfect. It’s unbiased, there is no 
tendency to over or underestimate N. Now the other question we must answer 
is, “Is it efficient?”. If we have to run it 500 times that is not too 
good. We will be stuck at our telescope for a long time. Lets run some 
smaller samples and see what happens but instead of average lets look at 
variability using the Standard Deviation:  

      sdev←{((+⌿(⍵-(⍴⍵)⍴avg ⍵)*2)÷(1↑⍴⍵)-1)*0.5} ⍝ avg sum sq div by mean 
      sdev 10{⍺ SaucDo ⍵}¨500⍴1000000      ⍝ 500 samples size 10 each
87455.71697                                ⍝ standard deviation
      sdev 10{⍺ SaucDo ⍵}¨500⍴1000000      ⍝ 500 samples size 10 each
91742.41377                                ⍝ standard deviation 
      sdev 100{⍺ SaucDo ⍵}¨500⍴1000000     ⍝ 500 samples size 100 each
9519.923639                                ⍝ standard deviation
      sdev 1000{⍺ SaucDo ⍵}¨500⍴1000000    ⍝ 500 samples size 1000 each
1017.421925                                ⍝ standard deviation
      sdev 10000{⍺ SaucDo ⍵}¨500⍴1000000   ⍝ 500 samples size 10000 each
100.0278067                                ⍝ standard deviation 

So bigger samples are more accurate. Can you see an even more specific 
pattern? Lets divide SD by reverse of rounded sample sizes 

     91742 9520 1017 100 11÷⌽10 100 1000 10000 
0.91742 0.952 1.017 1                      ⍝ decreasing factor of ~10 

That is interesting. Each time I increase sample size by a factor of 10 the 
variability decreases by a factor of ~10.  Is this just chance? Lets test 
this theory by trying one more even larger sample. Since the last one took 
some time and I want try 100000 this time of course I will decrease the 
number of trials by a factor of 10 from 500 to 50. 

      sdev 100000{⍺ SaucDo ⍵}¨50⍴1000000 ⍝ 50 samples size 100000 each
10.60093385                              ⍝ very consistent Ssdev decrease 

Lets check as we did before. 

     91742 9520 1017 100 11÷⌽10 100 1000 10000 100000 
0.91742 0.952 1.017 1 1.1 ⍝ Looks good 

So to summarize the estimation equation is unbiased, It does not over or 
underestimate N. And if I increase the sample size by a factor of 10 the 
variability of my prediction decreases by a factor of ~10.  

So if I saw saucers with the follow binary id numbers how many total 
Martian saucers is your best estimate.  

1. (1 0 0 1)(1 1 0 0 0)(1 0 1 1) 
2. (1 0 0 1)(1 0 1 1) 
3. (1 0 0 0 1 1 0 0 0 1 1)(1 1 0 0 0)(1 0 1 1)(1 0 0 1 1 0 0 1 0 0) 

And extra credit: what are all the above binary id numbers in decimal form? 

Answers: 
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1(9,24,11=31),2(9,11=15.5),3(1123,24,11,612=1402.75) 
(SaucEst(1 0 0 1)(1 0 1 1))(2⊥¨(1 0 0 1)(1 1 0 0 0)(1 0 1 1)) 

Finally lets plot some data to see what variability looks like. So run it 
10 times with each sample=20. The correct answer is 100 saucers. So 8 of 10 
close but estimates of 90 & 93 are off. The avgerage is 97.9 Pretty good! 

ch.Set 'Footer' (Z←'FreqPlot ⊃¨20 SaucDo ¨10⍴100') ⋄ ⍎Z 

How Often Will Current Year ÷ By Your Age Be Even? * 
This example taken from: 
http://www.mathgoespop.com/2010/01/a-mathematical-new-years-game.html

Lets say you are 16 and the current year is 2014. Lets find out if in any 
of the next 12 years your age divides evenly into the corresponding year. 

ages←15+⍳12 
      years←2013+⍳12 

Now we could just divide years÷ages & look, but let APL select for us. 
Compare years÷ages to floor(⌊)years÷ages to see where it’s even. Floor(⌊) 
rounds down. So floor on an integer will = the number. For decimals this 
will not be the case. 2=⌊2 but 2.3≠⌊2.3 because ⌊2.3 is 2 and 2.3≠2. 
            (years÷ages)=(⌊years÷ages) 
0 0 1 0 0 0 0 0 0 0 0 1 ⍝ 1=even result, else=0: (years÷ages)=(⌊years÷ages) 

http://www.mathgoespop.com/2010/01/a-mathematical-new-years-game.html
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So 3rd and 12th years are even. Lets use these 1’s and 0’s to select those years: 

((years÷ages)=(⌊years÷ages))/years 
2016 2025 

Or to see the ages: 

      ((years÷ages)=(⌊years÷ages))/ages 
18 27 

Or with a little more fiddling both years and ages together: 

      ↑(⊂(years÷ages)=(⌊years÷ages))/¨years ages ⍝ OR ↑(d=⌊d←÷/ya)/¨ya←years ages 
2016 2025 
18 27 

Now lets create a program to do this and have it automatically check all ages 
from you current age to age 100. ⎕TS returns today’s date and time and 1↑selects 
the first part of it which is this year. So ⍺ is set to the years from current to 
the year you will be 100. ⍵ is input by you and should be your current age. The 
program has 2 lines separated by the ⋄. The first line sets up the ages and 
matching years and the second line does the selection 

EvenYrDivAge← {⍺←(1↑⎕TS-1)+⍳⍴ages←⍵+0,⍳100-⍵ ⋄ ↑(⊂div=⌊div)/¨⍺ ages (div←⍺÷ages)} 

Lets try the program now. Say you are 16 and the date today is 2015. 

        EvenYrDivAge 15 
2016 2020 2025 2040 2050 2080 2100 
  16   20   25   40   50   80  100 
 126  101   81   51   41   26   21 

So there are 7 years that a person who is 15 in 2015 will have an age that 
divides the current year evenly. Those ages are 16, 20, 25, 40, 50, 80, and 100. 
The last row above shows the other factor of the division. So for example 
16×126=2016. 

Are all Numbers of Form abcabc Divisible by 13? *** 
How can that be? Most numbers are not divisible by 13. Lets check it out. 

      123123÷13    ⍝ 123123 follows the abcabc format: a=1 b=2 c=3 
9741               ⍝ yes that one is
      264264 813813 547547÷13 
20328 62601 42119  ⍝ yes those 3 are

Lets write a program to test this out more thoroughly with 3 little fns.  

      rand3u←{⍵?9} ⍝ make 3 unique random digits a b c with values 1-9 
      dup2←{10⊥⍵,⍵} ⍝ duplicate a b c and smooshes them together: abcabc
      div13←{(⌊x)=x←⍵÷13} ⍝ x is # ÷ 13. now see if round down (⌊) of x=x 

      div13 dup2 rand3u 3     ⍝ test it. remember apl works right to left
1                             ⍝ 1 yes the abcabc # is evenly ÷ by 13

      div13 ⎕←dup2 ⎕←rand3u 3 ⍝ use output windows to see intermediates
2 5 8                         ⍝ 3 random digits made by rand3
258258                        ⍝ 3 digits duplicated and smooshed by dup2
1                             ⍝ # ÷ 13 & compare to #’s floor 1=div by 13

      div13¨ ⎕←dup2¨ ⎕←rand3u¨ 3 3  ⍝ try it twice using each (¨) 
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 9 5 9  5 3 7                       ⍝ the two different a b c’s
959959 537537                       ⍝ each duplicated & smooshed together
1 1                                 ⍝ each is evenly ÷ by 13

      +/div13¨ dup2¨ rand3u¨ 50000⍴3 ⍝ try 50,000 times & add up 1’s(+/) 
50000                               ⍝ all 50,000 #’s were divisible by 13

What if a b & c are not unique #’s? For example is 111111 divisible by 13. 
Lets revise rand3u to allow non unique numbers & 0’s and try again. 

      rand3←{¯1+?⍵⍴10} ⍝ creates random numbers that may not be unique
       rand3¨ 4⍴3 
 2 1 8  6 1 1  0 6 1  5 8 5  ⍝ group 2 and 4 are not unique sets of #’s 

⍝ group 3 will be 5 digit # 61061 
      +/div13¨ dup2¨ rand3¨ 50000⍴3 ⍝ try with possible non unique a b c’s
50000                               ⍝ 50,000 non unique are evenly ÷ by 13

What Is Your Name Worth? * 
If each letter in alphabet was worth a different amount of points (A=1 
B=2... Z=26, whose name would be worth the most points? 

If A=1 B=2 C=3 . . . Z=26 then ABE would be worth 1+2+5=8 points. 

In APL There is an system function ⎕A which returns the capital letters in 
the alphabet. In boxes below boldface is APL, rest after ⍝ is comments. 

      ⎕A                      ⍝ type ⎕A into APL session 
ABCDEFGHIJKLMNOPQRSTUVWXYZ    ⍝ and this comes back. Try it! 

Now we can use dyadic index of(⍳) to find where in ⎕A different letters 
are in a name (must be capitals). 

      ⎕A⍳'ABE'        ⍝ dyadic means 2: ⍳ has a left and right argument.
1 2 5                 ⍝ so positions in ⎕A for ABE are A=1 B=2 E=5 

Now a fns to get index numbers of letters & then add them up using +/: 

      NAMSUM←{+/⎕A⍳⍵} ⍝ note APL goes right→left: finds indexes then adds 
      NAMSUM 'ABE'    ⍝ call fns NAMESUM pass it a name to index and add 
8                     ⍝ So ABE’s score is 8 

Lets try on few names: (again remember they must be all capitals) 

      NAMES←'JOHN' 'MARY' 'ROBERTA' 'VICTOR' 'TROY' ⍝ store names
      NAMSUM¨NAMES    ⍝ call fns NAMESUM for each(¨) of the names in NAMES
47 57 79 87 78        ⍝ so VICTOR the fourth name wins. 

Lets make a labeled table & bar graph so we can see the results better: 

    +DATA←↑(NAMES)( NAMSUM¨NAMES) ⍝ make table. The + shows the table 
 JOHN  MARY  ROBERTA  VICTOR  TROY  
   47    57       79      87    78 

Now put cursor on DATA & click Barchart icon on toolbar at top or enter: 
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     FreqBar DATA 

Rate Writing Based Upon Word And Sentence Length *** 
First lets store some data in variable lincoln. Here is something he wrote: 

If we could first know where we are, and whither we are tending, we could then better 
judge what to do, and how to do it. We are now far into the fifth year, since a policy 
was initiated, with the avowed object, and confident promise, of putting an end to 
slavery agitation. Under the operation of that policy, that agitation has not only, not 
ceased, but has constantly augmented. In my opinion, it will not cease, until a crisis 
shall have been reached, and passed. "A house divided against itself cannot stand." I 
believe this government cannot endure, permanently half slave and half free.

There're many ways to read data into APL. In this case the easiest way is 
to use cut and paste, but text is too long so do this in two steps:.  

      lincoln←'If we could'  ⍝ type this and press enter.

Now open up edit window by double click on word lincoln & cut & paste 
above text into window. Incidentally the edit window is very useful to add, 
change, delete or just look at any information in any variable or program 
you have already created. All you have to do is double click on its name. 

First a fns to elim unneeded punctuation, but keep sentence end stuff .?! 
      elim←{(~⍵∊⍺)/⍵}         ⍝ fns to eliminate ⍺ chars from ⍵
      sam←',;:"'elim lincoln  ⍝ eliminate (,;:") from lincoln and store in sam. 
Notice that .?! are not in the list, so .?! will be left in for now. 

Now fns to partition character strings into either words or sentences, 
default partition by spaces(⍺←' '), so each partition contain 1 word so we 
can count word length with (⍴). Keep program flexible so can also partition 
by sentence end markers(⍺='.?!') so we can also count words in sentences.  

      partition←{⍺←' ' ⋄ ⎕ML←3 ⋄ (~⍵∊⍺)⊂⍵}⍝ partition fns (default is words)
      ⍴sentence←'.?!' partition sam   ⍝ sentence contains the sentences  
6                                     ⍝ the ⍴ displays that there are 6 sentences 

Now two fns: one to average word length & one to average number of words 
per sentence in Lincoln’s speech. Steps: 1)eliminates all punctuation 
including .?! first, then 2)partitions into words using the default 
spaces, then 3)finds the size of each word and then 4)averages those sizes. 

avgwordlen←{avg ⍴¨partition ',;:.?!"'elim ⍵} ⍝ elim .?! also here 
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avgwordlen lincoln 
4.447619048                              ⍝ average word length for whole doc 

Next fns 1)eliminates punctuation except .?! then 2)partitions into 
sentences using .?! and then 3)partitions each sentence into words using 
spaces, then 4)finds the number of words within each of the sentences(⍴¨) 
then 4)exposes(⊃,/) the word counts for each of the sentences and then 
5)finds the average number of words for the sentences. 

avgsentlen←{avg ⊃,/⍴¨ partition ¨'.?!' partition ',;:"'elim ⍵} 
avgsentlen lincoln

17.5                                     ⍝ average words per sentence 

Now compare Lincoln and Shakespeare, using some text from Romeo and Juliet. 
avgwordlen¨ lincoln romeo 

4.447619048    4.135231317      ⍝ so Lincoln uses very slightly longer words 
avgsentlen ¨ lincoln romeo 

17.5 21.61538462                  ⍝ but Shakespeare sentences are ~4 words longer 

Stylometry: The analysis of text documents ***** 
Stylometry is often used to attribute authorship to anonymous or disputed 
documents. It has legal, academic & literary applications, ranging from ? 
of authorship of Shakespeare's works to forensic linguistics. (Wikipedia) 

I will show some APL functions I created to analyze and compare different 
authors. In section below I analyze/ compare first 6 chapters from Mark 
Twain's Huckleberry Fin with 3 chapters from Mary Shelley's Frankenstein. 

    )load Anna3     ⍝ to access the Stylometry Fns first load Anna3 
    )cs Stylometry  ⍝ then change to Stylometry namespace(subfolder)   

A Good text data source www:gutenberg.org .Project Gutenberg offers 45,263 
free ebooks to download. The easiest way to download is to go to 
Gutenberg.org, find a .txt version of a book and display it. Then cut and 
paste sections or chapters into character variables in Anna3.Stylometry 
like this: 

TwainHuckFin1←'xxx'  ⍝ enter a line with your variable name 
                     ⍝ now double click on TwainHuckFin1 
                     ⍝ delete xxx and paste text in and press ESC 
)save                ⍝ now save it. 

Then I put 9 chapter names in var called Txts. [see Txts in VARS section] 

Once I have saved my sample text files, then I choose ways to compare them: 
1. Compare average sentence length. (use APL: AvgSentLen) 
2. Compare average word length. (use APL: AvgWordLen) 
3. Compare vocabulary level. (use APL: VocLevel using 32 levels of 
   Dunn-Rankin vocabulary test L1-L32) 
4. Compare percentage of function words used. (use APL: PercentWords and 
   file FUNCTIONWORDS(321 common function words). 
5. Compare percentages of positive and negative words used. (use APL: 
   function PercentWords with files PosWords(114) and NegWords(141). 

1. Lets compare average sentence length for these 9 chapters: 6 from Twain 
and 3 from Shelly. Shelly’s sentences tend longer, but it is not clear cut. 

2⍕AvgSentLen¨⍎¨Txts 
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 18.43 15.55 19.35 14.05 14.53 19.98 21.67 23.65 19.43 

2. Lets compare average word length for these 9 chapters: 6 from Twain and 
3 from Shelly. It looks like Shelly’s words are consistently longer with 
Twain always in low 4’s and Shelly always in the low 5’s. 

2⍕AvgWordLen¨⍎¨Txts 
 4.20 4.30 4.29 4.15 4.28 4.14 5.16 5.19 5.11 

3. Let’s compare Vocabulary level for these 9 chapters: 6 from Twain and 3 
from Shelly. It looks like Shelly’s vocabulary level is much lower than 
Twains except for Twain’s chapter 4 which was lower than all of Shelly’s. 

2⍕VocLevel¨⍎¨Txts 
 11.70 14.35 10.55 3.43 11.25 11.75 5.44 5.08 6.26 

4. Let’s compare percentage of FUNCTIONWORDS for these 9 chapters: 6 from 
Twain and 3 from Shelly. FUNCTIONWORDS is a variable of 321 words useful 
in detection of different people's styles. Function words are the words we 
use to make our sentences grammatically correct. Pronouns, determiners, and 
prepositions, and auxiliary verbs are examples of function words. Words 
such as: a, about, and, as, my, she, almost, before, and except are all 
function words.  http://myweb.tiscali.co.uk/wordscape/museum/funcword.html
Shelly’s use of function words is consistently much lower than Twains. 

2⍕PercentWords¨⍎¨Txts 
 59.82 59.09 59.50 57.12 58.56 60.02 52.38 51.81 53.13 

Now one APL fns computes & labels all 6 Stylometrics(stored in variable 
Fnames) for the 9 chapters(stored in Txts). [see VARS section below] 

        Fnames StyTbl Txts 
Text\Fns     AvgSentLen AvgWordLen VocLevel FunctionWords PosWords NegWords 
TwainHuckFin1    18.19       4.20      11.70    59.13       .76     1.90 
TwainHuckFin2    15.55       4.30      14.80    58.31       .37      .73 
TwainHuckFin3    19.35       4.29      10.55    58.86       .26      .64 
TwainHuckFin4    14.05       4.15       3.43    56.49       .63     1.33 
TwainHuckFin5    14.41       4.28      11.25    56.82       .54     1.01 
TwainHuckFin6    19.98       4.14      11.75    59.15       .69     1.09 
Frankenstein1    21.67       5.16       5.44    52.38       .74      .50 
Frankenstein2    23.65       5.19       5.08    51.81      1.04      .25 
Frankenstein3    19.43       5.11       6.26    53.13       .45      .53 

---VARS --(USED BY FNS.  In Anna3.Stylometry )------------------------ 

SYMB← '.?!`~@#$%^&*()_+-=[{]}\|;:",<>/0123456789' 

FUNCTIONWORDS(321) words provide sentence structure but limited meaning. 
Some examples follow: 
       a  about  above  after  again  ago  all  almost  along  already 
       although always  am  among an  and  another  any  anybody
PosWords(114) words like:free easy lucky. NegWords(114) like:bad sad hurt 

Txts←((⊂'TwainHuckFin'),¨⍕¨⍳6),((⊂'Frankenstein'),¨⍕¨⍳3)      ⍝ clever way

Fnames←'AvgSentLen' 'AvgWordLen' 'VocLevel' 'PercentWords'    ⍝ easy way

Fnames,←'PosWords PercentWords' 'NegWords PercentWords' 
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---FNS (in Anna3.Stylometry) ------------------------------------------ 

AvgSentLen←{avg⊃,/⍴¨partition¨(3↑SYMB)partition(3↓SYMB)elim ⍵} 

AvgWordLen←{avg⊃,/⍴¨partition SYMB elim ⍵} 

VocLevel←{avg(⊃,/⍴¨(⍎¨'L',¨⍕¨⍳32)FindWords¨⊂⍵)/⍳32} 

PercentWords←{⍺←FUNCTIONWORDS ⋄ ⊃100×(⍴⍺ FindWords ⍵)÷⍴partition ⍵} 

StyTbl←{⍉((1,1+⍴⍵)⍴(⊂'Text\Fns'),⍵)⍪(((⍴⍺),1)⍴⍺),((⊂8 2)⍕¨⍎¨⍺∘.,(' ',¨⍵))} 

---UTILITY FNS (in Anna3.Stylometry) --------------------------------------------

avg←{(+/⍵)÷⍴⍵}      ⍝ average =sum of #s(+/) divided by(÷) # of numbers(⍴)
FindWords←{⍺←FUNCTIONWORDS ⋄ ((words)∊⍺)/words←partition case SYMB elim ⍵} 

elim←{(~⍵∊⍺)/⍵}                              ⍝ elim unneeded SYMBOLS ⍺

partition←{⍺←' ' ⋄ ⎕ML←3 ⋄ (~⍵∊⍺)⊂⍵} ⍝ brk txt by ⍺ (ie spaces or periods)
 case←{res←⍵ ⋄ ⍺←0 ⍝ default low case ⍺:0=up2lower change ⍺=1=lower2up
      To From←{⎕UCS(⎕UCS ⍵)+¯1+⍳26}¨⍺⌽'aA'   ⍝ find 26 lower & uppers
      (bool/res)←To[From⍳(bool←⍵∊From)/⍵]    ⍝ change only letters up/down
      res                                    ⍝ return modified string res
    }

Four Fun With Numbers ***** 
The follow are 4 fun/amusing math/number problems & their solution in APL. 
Have fun and remember after you execute a line you can either put the 
cursor on any of the variables created to see what they look like or type 
their name on a line to see them displayed.  

Find all 3 digit whole positive numbers whose digits are the same when 
added or multiplied together. 

Remember Encode(⊤) can be used to break numbers into digits like this: 

      10 10 10⊤126         ⍝ to break up one 3 digit decimal number 
1 2 6 
      (⊂10 10 10)⊤¨34 126  ⍝ & this to break up 2 or more numbers at once 
0 3 4  1 2 6 

So here is the solution: 

      ((+/¨d)=(×/¨d←(⊂10 10 10)⊤¨n))/n←99+⍳900 
123 132 213 231 312 321

Find two positive numbers that have a 2 digit answer when their digits are 
added together and a 1 digit answer when digits are multiplied together.  

      ((10≤+/¨d)∧(10>×/¨d←(⊂10 10)⊤¨n))/n←9+⍳90 
19 91 

Find all two 2 digit whole positive numbers that have same answer when 
their digits are multiplied together as when digits are divided by each 
other. 

      ((÷/¨d)=(×/¨d←(⊂10 10)⊤¨n))/n←9+⍳90     ⍝ seems logical but fails
DOMAIN ERROR                                  ⍝ can’t divide by zero so. 

So here is the fix. Need to turn digits around so 20 30 become 02 and 03 
etc. the reverse symbol(⌽) will do this. 
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      (b←(÷/¨d)=(×/¨d←⌽¨(⊂10 10)⊤¨n))/n←9+⍳90 ⍝ flip(⌽) each(¨) set digits 
10 11 12 13 14 15 16 17 18 19 20 30 40 50 60 70 80 90 

Find a 10 digit number containing each digit once, so that the number 
formed by the last n digits is divisible by n for each value of n from 1-
10. For an easy example lets try 3 digits: 168 works because 1÷1, 16÷2, and 
168÷3 all are evenly divisible with no residues(|) or decimal parts.  

Let’s break this problem into steps we have to do:  

1) get some unique random digits 0-9, (each digit only once) 

2) break digits up in increasing pieces (1 16 168)  

3) do the divisions by 1,2,3,..10, (1÷1, 16÷2, and 168÷3) 

4) check if the answers have no remainders(residues(|)), and  

5) make a function repeatedly call it until it finds an answer.  

Now fiddle on your own, then look below at my 5 steps to the solution. 

1) I can imagine at least two different ways to get the random numbers. 

⍕10⊥¯1+3?10  ⍝ 3UniqueRand#1-10, -1(0-9), squish, make # to char 
879 

OR even easier way using built in ⎕D which ='0123456789' as characters. 

   ⎕D[3?10]        ⍝ 3 rand# with no replacement indices of ⎕D 
251 

2) Now break the char string into increasing pieces: '2' '25' '251' 

1 2 3↑¨⊂'251'  ⍝ take(↑) each(¨) of 1 2 3 on enclosed(⊂)'251' 
2 25 251           ⍝ more general way (⍳3)↑¨⊂'251'

3) now do the divisions: actually find the residues or remainders (|). 

     (⍳3)|⍎¨(⍳3)↑¨⊂'251' 
0 1 2                         ⍝ so remainders for 2÷1=0 25÷2=1 251÷3=2 

4) Now check to see if each remainder(|) =0 

0=(⍳3)|⍎¨(⍳3)↑¨⊂'251'    ⍝ if remainder=0 result of(0=) is true=1 
1 0 0                         ⍝ so yes,no,no  for 2÷1=0 25÷2=1 251÷3=2 

   Now check to see if all remainders =0  (1=yes the remainder=0) 

∧/0=(⍳3)|⍎¨(⍳3)↑¨⊂'251'  ⍝ so check if all(∧/) 1’s(remainders=0)  
0                             ⍝ so no all remainders are not 0 

5) Create function to do all the above 

NDigit←{∧/0=n|⍎¨(n←⍳⍵)↑¨⊂c←⎕D[⍵?10]:⎕←c} ⍝ ⍵ is input ie 3 

The fns is inside of {}. It’s name is Ndigit. The code to the left of the 
: is called the guard. If the guard is true(1) The code to the right(⎕←c) 
with be executed. In this case the passing number(c) will be displayed. If 
the guard is false, the code to the result will not be executed and nothing 
will be displayed. Now lets try it 10 times for the 3 digit number. 

NDigit ¨10⍴3        ⍝ try 10 random 3 digit #’s. It finds 5 #’s 
789                      ⍝ so residuals all=0: 7÷1 78÷2 789÷3 
801                      ⍝ so residuals all=0: 8÷1 80÷2 801÷3 
984                      ⍝ so residuals all=0: 9÷1 98÷2 984÷3 
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963                      ⍝ so residuals all=0: 9÷1 96÷2 963÷3 
024                      ⍝ so residuals all=0: 0÷1 02÷2 024÷3 

Now lets try the real problem with 10 digits. Warning there is only one 
correct number and there are many numbers to test so it will take a lot of 
runs. On my computer it took a number of minutes to find the 1 number. You 
might work your way up from 1000 10 digit numbers using NDigit ¨1000⍴10. 
Good luck. Tell me when you find it (hidden answer=4138006086-321458796). 

Extra credit. If you think about it a bit, you may be able to eliminate 
some numbers and design a fns that runs faster by selecting only certain 
random numbers. Think for a minute and only then read my next sentence that 
will give you one such hint. OK here is my hint. The last digit is the 
tenth digit and that longest number must be divisible by ten and the only 
numbers that are divisible by ten end in zero so that is what the last 
digit must be. So in this case you could simply search for a nine digit 
number using the numbers one through nine and then tack a zero on the end. 
This should speed things up considerably. Can you create a special fns 
called NDigit10 which will only do the 10 digit problem. The NDigit fns 
above is of course more general and will do all problems from 1 to 10. 

There are constraints on other digits also which could be used. There’s a 
trade off as it will take more code and thought on your part but it will 
strain the computer less. Best to allocate resources between your brain & 
your computers brain to get job done most efficiently. You have a powerful 
partner but you have skills it does not have. Together the two of you can 
go very far. Alone neither of you will probably amount to a hill of beans.  

How Many Draws To Get An Ace? **** 
The following fns shows average # of draws to get an ace. The answer is 
unexpected. The fns shows its lines of code as it runs. Here is the fns: 

FirstAce;S;first;avg 
 'The First Ace Problem from Fifty Challenging Problems in Probability' 
 ' by Frederick Mossteller 1965 Harvard University' 
 S←{⎕←⍵ ⋄ ⍎⍵} ⍝ utility to both show and execute a line 
 'What is average number of cards to draw before getting an ace?' 
 S'4?52 ⍝ The positions of four aces randomly placed in deck of 52 cards?' 
 S'⌊/4?52 ⍝ Find 1st(min) of 4 new random ace positions in deck of cards.' 
 S'first←{⌊/⍵?52} ⍝ Turn above code to fns to find first position of ace.' 
 S'first 4 ⍝ Call it once to find position of first ace.' 
 S'first ¨10⍴4 ⍝ Call 10 times, find position of 1st ace in 10 shuffles.' 
 S'avg←{(+/⍵)÷⍴⍵} ⍝ Write fns to average results.' 
 S'avg first ¨500000⍴4 ⍝ Call it 500,000 times and average results.' 
 'So ~10.6 cards to draw to get an ace on the average.' 
 'More than 500,000 fills the workspace so here is a little workaround.' 
 S'avg{avg first ¨500000⍴4}¨10⍴0 ⍝ Avg of 500,000 10 times and avg that.' 
 'Notice these details in the code:' 
 ' 1: Unnamed fns: {avg first ¨500000⍴4} as called only once inline.' 
 ' 2: The 10 zeros: (10⍴0) not used. They only make fns run 10 times.' 
 ' 3: 10.6 probably not your bet to be average # of draws to get an ace.' 
 ' 4: Can you modify fns to see avg # of draws to get any spade?' 
 ' 5: Can you simplify fns to get avg # of throws of dice to get a 3 is?' 
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And here is the fns both running and showing all its code: 
FirsAce                                                      

The First Ace Problem from Fifty Challenging Problems in Probability 
 by Frederick Mossteller 1965 Harvard University 
What is average number of cards to draw before getting an ace? 
4?52 ⍝ The positions of four aces randomly placed in deck of 52 cards? 
48 20 51 5 
⌊/4?52 ⍝ Find 1st(min) of 4 new random ace positions in deck of cards. 
17 
first←{⌊/⍵?52} ⍝ Turn above code to fns to find first position of ace. 
first 4 ⍝ Call it once to find position of first ace. 
2 
first ¨10⍴4 ⍝ Call 10 times, find position of 1st ace in 10 shuffles. 
13 2 19 13 22 27 20 16 8 17 
avg←{(+/⍵)÷⍴⍵} ⍝ Write fns to average results. 
avg first ¨500000⍴4 ⍝ Call it 500,000 times and average results. 
10.59594 
So ~10.6 cards to draw to get an ace on the average. 

More than 500,000 fills the workspace so here is a little workaround. 

avg{avg first ¨500000⍴4}¨10⍴0 ⍝ Avg of 500,000 10 times and then avg those 10 averages. 
 10.5960054  

Notice these details in the code: 
 1: Unnamed fns: {avg first ¨500000⍴4} If you wanted to use it more you should name it. 
 2: The 10 zeros: (10⍴0) not used. They only make unnamed fns run 10 times. 
 3: 10.6 is probably not your bet to be the average # of draws to get an ace. 
 4: Can you modify fns to see avg # of draws to get any spade? 
 5: What would you do to get avg # of throws of dice to get a 3? 
 6: Can you determine avg # draws to get both a 4&5 ? 

Five Card draw Probabilities **** 
1. If draw 5 cards what is probability of 1,2,3 or 4 aces? 

{(+/{(+/(52↑4⍴1)[5?52])∊ ⍳4}¨⍵⍴0)÷⍵}1000000      ⍝ 1,2,3 or 4(∊⍳4)
0.34085  ⍝ ~ 34% for 1-4 aces if 1 million random deals  

Now lets look at 1 or 2 or 3 or 4 aces individually: 

    {(+/{(+/(52↑4⍴1)[5?52])∊ 1}¨⍵⍴0)÷⍵}1000000       ⍝ 1 ace(∊ 1) 
0.29966                                              ⍝ 30% chance 1 ace 

    {(+/{(+/(⊃,/4 48⍴¨1 0)[5?52])∊ 2}¨⍵⍴0)÷⍵}1000000 ⍝ 2 aces(∊ 2)
0.039946                                             ⍝ ~4% chance 2 aces 

    {(+/{(+/((4⍴1),(48⍴0))[5?52])∊ 3}¨⍵⍴0)÷⍵}1000000 ⍝ 3 aces(∊ 3)
0.00171                                              ⍝ ~.1% chance 3 aces 

    {(+/{(+/(4 48/1 0)[5?52])∊ 4}¨⍵⍴0)÷⍵}1000000    ⍝ 4 aces(∊ 4)
0.000016                                            ⍝ ~.002% chance 4 aces 

Here is how it works. 4⍴1 makes 4 ones. 52↑ takes the 4 ones and pads with 
48 zeros. (There are many ways to do this as I demonstrate above in each 
example.) 

Ones will be the hits and zeros the misses. 5?52 takes 5 random numbers 
between 1 and 52 without replacement. 
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The random numbers are used to index the 52 1's and 0's generated. If the 
the random index numbers are between 1 and 4 a 1 will be selected(an ace) 
otherwise it is not one of the first four aces and a 0 will be picked. 

 These 5 selections(1 for each ace and 0 otherwise) are summed up and to 
see if they are a member of (∊). The 1 million results(0=no 1=yes) are then 
again summed and divided by the 1 million. Note there is a fns {} inside 
another fns{} The inner fns runs 1 million times summing up the times 
correct # aces are found in a million tries. The outer fns divides the sum 
by 1 million to get the percent. Another note ¨⍵⍴0 passes 0 to the inner 
fns 1 million times. The 0 is not used in the inner fns, it just causes the 
inner fns to run 1 million times spewing out a 1 or 0 each time that is 
then summed (+/) and divided by 1 million.  

2. If draw 5 cards what is prob of 3,4,5 in a row of same suit. 

    +cards←(52⍴⍳13)+(13/0 20 40 60) ⍝ create deck 4 suits 13 cards in each 
1 2 3 4 5 6 7 8 9 10 11 12 13 21 22 23 24 25 26 27 28 29 30 31 32 
      33 41 42 43 44 45 46 47 48 49 50 51 52 53 61 62 63 64 65 66 
      67 68 69 70 71 72 73

Cards are created in more detail this time as I have to note different 
suits and numbers to check for cards in a row in a certain suit. So first 
suite (ace,2-10,jack,queen,king=⍳13). Subsequent suits are increased by 20 
so each card has a unique number and each suit has each card increasing by 
1. Note there is a gap between each suit(14-20, 34-40 and 54-60).  
First we also need a fns to sort the drawn cards in order: 

     sort←{⍵[⍋⍵]} 

Now lets look for runs of 3 or more (ie 2 differences=1 for a run of 3, 3 
diffs=1 for a run of 4 and 4 diffs=1 for a run of 5) 

 2≤+/⎕←1=⎕←|2-/⎕←sort cards[5?52] 
5 10 26 47 50   ⍝ shows(⎕) 5 randomly selected cards sorted 
5 16 21 3       ⍝ shows(⎕) the 4 diffs between pairs of above cards(2-/) 
0 0 0 0         ⍝ shows that none of differences =1 
0               ⍝ shows that no sequence was longer than 2 

Now lets take the shows(⎕) out and run it a million times 

 {(+/{2≤+/1=|2-/sort cards[5?52]}¨⍵⍴0)÷⍵}1000000 
0.037195   ⍝ ~3.7% of time will I get a run of 3 or more in the same suit. 

Now lets look at runs for 3, 4 and 5 separately  

 {(+/{2=+/1=|2-/sort cards[5?52]}¨⍵⍴0)÷⍵}1000000 
0.035668         ⍝ ~3.6% runs of 3 
 {(+/{3=+/1=|2-/sort cards[5?52]}¨⍵⍴0)÷⍵}1000000 
0.001466         ⍝ ~.1% runs of 4 
 {(+/{4=+/1=|2-/sort cards[5?52]}¨⍵⍴0)÷⍵}1000000 
0.000013         ⍝~.0013% runs of 5   

3. What are odds of something simple like 1 pair? This probability is
0.422569 
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How would you go about this? (Hint: make each suit string equal) 
http://www.math.hawaii.edu/~ramsey/Probability/PokerHands.html 

An Optimal Stopping Problem: Dating For Dummies **** 
How many should you date before deciding to marry next one better than 
anyone you dated so far if you want best odds of getting best 1 or maybe 1 
in top 10? Assume nd=# of total people you could date, s=# you date and 
top=# of best people you would be willing to accept(1 if you want best, 2 
if either of top 2 would be good enough etc.) 

Here is the fns: The actual code is boldface. All the rest is comments. 

dates←{  ⍝ each time fns called returns 1 if found good enough mate else 0 
⍝ Chapter 20:An Optimal Stopping Problem or maybe Dating for Dummies 
⍝ How many to date before picking a mate from book by Paul Nahin 2008 
⍝ Digital Dice:Computational Solutions to Practical Probability Problems 
⍝ or https://www.ted.com/talks/hannah_fry_the_mathematics_of_love#t-598603 
⍝ Input and Output 
⍝ return 1 if pick person in "top" range of sample "s" by picking first 
⍝ date who is better than the best of "nd" people in the dated group.  

nd←⍺ ⋄ s top←⍵ ⍝ nd=# dates s=sample size top=# of good enough dates 
(s=0)∨(s=nd):top≥?s ⍝ if picked first or last date odds are: ~top/s 
ranks←s?s ⍝ make random ranks for all dates. (1=best to s=worst) 
bestdate←⌊/nd↑ranks ⍝ bestdate=lowest rank(nd↑ranks) of those dated 
left←nd↓ranks ⍝ left=rest taking away those dated at beginning. 
better←(left<bestdate)/left ⍝ better=1 or 0 for  each left<bestdate 
top≥1↑better,10000000 ⍝ 1 if 1st pick of better in top range else 0 

⍝ sample probability runs:(only repeated run averages are really useful) 
⍝ 2 dates 11 1 ⍝ nd=2 s=11 top=1, return 1 if best=(next date>first two) 
⍝ following all call fns 10,000 times & average to get odds of success  
⍝ next 2 from book show odds for 0 to 11 dates from total of 11 people 
⍝ x,[1.5] {4⍕⊃avg ⍵ dates¨⊂11 1}¨10000⍴¨x←0,⍳10 ⍝ p94 table probabilities 
⍝ x,[1.5] {4⍕⊃avg ⍵ dates¨⊂11 3}¨10000⍴¨x←0,⍳10 ⍝ odds if ok with top 3 
⍝ next example s=1000, you date 7 various #'s (50×⍳7)[50 100 150...350] 
⍝ x,[1.5] {4⍕⊃avg ⍵ dates¨⊂1000 20}¨10000⍴¨x←50×⍳7 ⍝ odds mate in top 20 
} 

On page 94 of Paul Nahin’s book there’s a probability table that the above 
program will approximate. So let’s run it 10,000 times for each possible 
number of dates and average results to get his table for each number of 
possible dates. So if the number of all possible dates is nd=11 & you want 
the very best person(top=1). What are the odds of you getting the best 
person if you date 0,1,2,3,4,5,6,7,8,9, or 10 people before picking. 

x,[1.5] {4⍕⊃avg ⍵ dates¨⊂11 1}¨10000⍴¨x←0,⍳10  ⍝ avgs 100,000 trials 
 0  0.0913    ⍝ actual odds first person is best 1/s = 1/11 =.0909  9%
 1  0.2649 
 2  0.3448    ⍝ odds improving but still better to keep dating 
 3  0.3959 
 4  0.3991    ⍝ best odds ~40% if date 4 then pick next 1 better than 1-4 
 5  0.3777    ⍝ odds begin to decline ~38%. You should have picked sooner.
 6  0.3541    ⍝ 1/e= 
 7  0.2994
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 8  0.2456    ⍝ <25% chance of finding best one 
 9  0.1705 
10  0.0906    ⍝ actual odds last person is best 1/s = 1/11 =.0909  9% 

So if 11 people to date best odds of finding best 1 is date 4 then pick 
next one better than any of first 4. But remember this is only best odds 
~40%. ~60% of time you will miss very best one. Experiment seeing odds of 
getting 1 of the top 2 or 3. Or imagine 1000 in dating pool. How many 
should you date to get maybe 1 of the top 20. Running this program may not 
be quite as much fun as dating but it's lots faster and bit cheaper than 
having a couple hundred dates. Many decisions can be improved using this 
method. Can you think of some? How about: finding/buying/selling/renting: 
career, school, pet, house, apartment, car, bike. Anything that's gone once 
you say no. Or maybe you figure you want to have children by age 35 and you 
are now say 18. How many years should you date before you pick the next one 
who is better than any you have dated so far. Here is the answer: 

x,[1.5] {4⍕⊃avg ⍵ dates¨⊂17 1}¨100000⍴¨x←0,⍳17  ⍝ avgs 100,000 trials 
 0  0.0587  ⍝ actual odds that first year is best 1/s = 1÷17 =.0588  5.88%
 1  0.2005  
 2  0.2803  
 3  0.3300  
 4  0.3634  
 5  0.3785  
 6  0.3854 ⍝ best odds ~38% so date 6yrs then pick next 1 better than 1-6
 7  0.3824 ⍝ (for this simple case of picking the very best one there is 
 8  0.3701    easier way to calculate based on e [the base of the natural 
 9  0.3483    logarithms e=2.71828 or *1 in APL] simply do n×1÷e or in APL
10  0.3230    17×1÷*1 = 17×0.36787944117144233 = 6.25395049991452 so  
11  0.2909    best odds is about 36.79% of the way(roughly 1/3 of the 17 
12  0.2539    years or about 6 years it’s time to pick your partner) 
13  0.2125  
14  0.1637 ⍝ odds declining. You should have picked sooner.
15  0.1130  
16  0.0576  
17  0.0582 ⍝ actual odds that last year is best 1/s = 1÷17 =.0588  5.88%
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The twins problem (using math, Matlab and APL) *** 
From :  Wi l l  You Be Al ive 10 Years From Now? by Paul  Nahin 2014 

A Very Fun Book of  cur ious quest ions in  probabi l i ty 

In February 2008 I received a very interesting e-mail from Bruce C. Taylor, a professor of biomedical 
engineering at the University of Akron. Bruce had just been reading my book, Duelling Idiots 
(Princeton 2002), and that prompted him to write to me. Here's what Bruce wrote: 

I have an interesting probability problem that I have not been able to solve and I am just 
curious to see if you can come up with a solution. The problem came up when in one of our 
classes here I was assigning lab groups using a random number generator. As it turns out 
the class had 20 students, two of whom were related (twin sisters). Well, as luck would 
have it, the two sisters ended up in the same lab group of four. I had divided the class into 
five groups of four students. I, and a colleague, got to wondering what was the probability 
that the two sisters would end up in the same group. I originally thought that this would be a 
trivial problem but so far it has beaten me. I did write a MATLAB? program to solve the 
problem via a probabilistic model and I came up with a probability of 0.16 after 100,000 
repetitions. I think that this is the correct answer but I can't, for the life of me, arrive 
anywhere near the same answer analytically. I thought maybe you'd like to take a crack at 
it. 

Well, who could resist that? 
After a bit of thought I did arrive at a theoretical result, a rational fraction approximately 
equal to 0.1579, and so I wrote back to Bruce to ask, "You said the [Monte Carlo] estimate was 
0.16. Was it actually somewhat less?" Back came Bruce's response: "I ran the simulation three 
times at 100,000 reps. each and came up with the following: (1) 0.1591, (2) 0.1570, (3) 
0.1557." Not too bad an agreement with my fraction. I then wrote my own MATLAB? simulation 
code, ran it for ten million repetitions, and got an estimate of 0.1579092, an even better 
agreement with my theoretical fraction. 

2.2 THEORETICAL ANALYSIS 

To theoretically derive the answer to Bruce's question, here's what I sent him,, where (X
y) is, as in the 

first problem, the binomial coefficient x!/(x — y)!y! , with x and y both non-negative integers and y≤ x.

First, to find the total number of ways (TNW) to randomly place 20 students into 5 groups of 4 
each, imagine 5 bins. In the first bin we place 4 from 20, then 4 from the remaining 16 in the 
second bin, then 4 from remaining 12 in third bin, and so on. Combination formula follows 

×/4!20 16 12 8 4 ⍝ in APL 4 paired each # right of comb symbol ! then ×/ multiplies

Next, to find the total number of ways that the twins are together (TNWTT) in the same bin, we first 
imagine that the twins are glued together. When we select a twin, we automatically select the other 
one, too. There are 5 ways to place the glued twins into one of the bins, leaving 18 students. There are 
(1

2
8) ways to select the 2 students who join the twins, leaving 16 students. We then finish the analysis 

as before, that is 

5××/2 4 4 4 4!18 16 12 8 4 ⍝ in APL 

Note: ! is combination symbol ×/ multiplies all combinations 5× multiplies that result by 5 
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Now the probability we are after is: 

  = 3/19 = .15789…. 

(5×2!18)÷(4!20) = 0.15789473684210525 ⍝ Using APL combination symbol !

Note: !6 is factorial 6 & 2!6 is combinations of 6 taken 2 at a time. 

Now, as easy as the above analysis may appear, an early reviewer of this book (Nick Hobson) 
pointed out to me that there is an even easier way to see the result in a flash. A total of 20 lab slots 
are to be filled, with 4 slots in each lab section. One of the twins, of course, has to be in some lab 
section, leaving 3 slots in that section still available out of the 19 total slots that are still available. So, 
the probability that our second twin gets one of those 3 slots (and so joins her sister) is 3/19. That's it! 

2.3 COMPUTER SIMULATION 

To write a Monte Carlo simulation, I found the following imagery helpful. (I wrote my simulation 
code before receiving Nick's clever observation, so perhaps there is a better way to simulate—I'll 
leave that for you to explore!) I stalled by visualizing the 20 students lined up in front of me in 
some (random) order, standing in a row, shoulder to shoulder. Each holds a slip of paper. These 
slips each have a single number on them; there's a 2 on each twin's slip, while all the other 
students have a 1 on their slips. Starting at the far left (student 1), the first four students are 
assigned to lab section 1, the next four students to lab section 2, and so on, with students 17 
through 20 assigned to lab section 5. To simulate the placement of the twins into their lab 
sections, all we need do is randomly generate two different integers from 1 to 20, integers that 
determine the positions where the twins stand in the shoulder-to-shoulder row. 

The simulation code can determine if the two twins have been assigned to the same lab section 
by simply adding up the numbers, in each lab section, on the paper slips held by the students in 
that section. If a lab section has neither twin, the group sum will be 4, while if a lab section has 
one twin, the group sum will be 5. A group sum of 6, however, means we have a lab section that 
contains both twins. This is the decision logic behind the simulation code twins.m. I make no 
claims that twins.m is a superoptimal (in some sense) code, just that it is easily understood and 
executes in a reasonably short time (ten million repetitions on my quite ordinary, bottom-of-the-
line computer required less than 23 seconds to run). After the code listing, I'll give you a quick 
walkthrough of what each line is doing (the line numbers at the far left are not part of the code 
but are included simply as reference tags for the walkthrough). 

twins.m 

01 together=0; 
02 for loop1=1:10000000 
03 lab=ones(1,20); 
04 twin1=floor(20*rand)+1; 
05  tw in2= tw in1 ;  
06 while twin 1= =twin2 
07  twin2=floor(20"rand)+1; 
0 8  e n d  
09 lab(twin1)=2; 
10 lab(twin2)=2; 
11 groupsum=zeros(1,5); 
12 for loop2=1:5 
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13  x=4*(loop2-1); 
14  for loop3=1:4 
15  groupsum(loop2)=groupsum(loop2)+Iab(x+loop3); 
16  end 
1 7  e n d  
18 for loop4=1:5 
19  if groupsum(loop4)= =6 
20  together=together+1; 
21  end 
2 2  e n d  
23 end 
24 together/10000000 

Line 01 initializes the variable together to zero; at the end of ten million simulations together will be 
the number of simulations in which the twins were assigned to the same lab section. Lines 02 and 23 
define the outer for/end loop that cycles the code through the ten million simulations. Line 03 defines 
the row vector lab, with all of its 20 elements initially equal to 1. The value lab(k) is the number 
written on the slip of paper held by the student in the kth row position. Initially, then, all 20 students 
have a 1 on their individual slips of paper. Line 04 assigns twin1 equal to an integer value selected 
at random from 1 to 20, and line 05 assigns the same integer to twin2. Since the two twins can't, of 
course, have the same position in lab, lines 06 through 08 then continually assign twin2 a new 
random integer value until twin1 and twin2 have different integer values. Lines 09 and 10 write a 2 
on the slip of paper each twin holds, leaving the other 18 students holding slips of paper each with a 
1. Line 11 initializes all five elements of the row vector group-sum to zero. The two nested loops 
defined by lines 12 through 17 run through the 20 elements of lab, four at a time, from left to right, 
and generate the five element values of groupsum. Finally, the two nested loops defined by •lines 
18 through 22 check each element of groupsum and, if a value of 6 is detected (indicating both 
twins are in the same section), then together is incremented by one. Once the ten million 
simulations are finished, line 24 prints the code's estimate of the probability of the twins being in the 
same lab section (0.1579092), an estimate very close to the theoretical value. 

Now My 1 line of APL to compare to Nahim’s 24 lines of Matlab 

      5×avg{1 1≡1 2∊4?⍵}¨10000000⍴20 

0.157496    

Let me explain the code. Apl works from right to left 10000000⍴20 creates 
10 million 20’s. The each symbol ¨ calls the unnamed program between the 
{} 10 million times passing it one 20 each time assigning the 20 to the 
symbol ⍵. 4?20 finds 4 different random numbers between 1 and 20. Then 
the 1 2∊ sees if each of the numbers 1 & 2 is a member of the set of 4 
random numbers. If it is it returns a 1 otherwise it returns a 0. I have 
chosen 1 and 2 as the id numbers for the twins so if there is a 1 and a 2 
in the 4 numbers it means the twins are together in the first group. If 
it returns a 1 0 or 0 1 it means only one of the twins was in the group. 
If 0 0 it means neither of the twins was in the group. Finally match ≡
compares the two numbers to see if they match it’s left argument of 1 1. 
If they match a 1 is returned otherwise a 0 is returned. So after the 
program inside the {} runs 10 million times we have a string of 1’s and 
0’s which are averaged by the avg program to see the proportion of times 
the twins are both in the first group. If we had looked at 5 groups of 4 
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people each time we would have found 5 times more matches so I multiplied 
this number by 5 to get the expected percentage of times the twins would 
have been in one of the 5 groups.   

As you can see I cheated a little as the above example only looks at 1 of 
the 5 groups and then multiplies the average by 5 to get Monte Carlo 
estimate. So I am really doing 5 times less computation. If I change to 
50 million instead of 10 million I get a workspace full error on my 
computer. The APL program does the data as a vector instead of looping 
around and around as Matlab does and thus requires all the memory at one 
time. So to be fair I did 10 million runs 5 times to get my 50 million 
here which is equivalent to the 10 million Matlab example. So here it is:  

     5×avg{avg{1 1≡1 2∊4?⍵}¨10000000⍴⍵}¨5⍴20  

0.1579035 

I used this to compute the average avg←(+⌿ ÷ ≢) . For example: avg 4 5 6 
is sum of numbers (⍵=4 5 6 and +⌿⍵=18) divided ÷ by number of numbers 
(w=4 5 6 and ≢ ⍵=3), which is simply the sum of the numbers +⌿ divided ÷
by number of numbers ≢. Thus 18÷3=6 the average.  

Here is another run with the apl program to compute the average included 
in the one line APL program. It also shows that 50 million runs is 
probably enough to get a pretty good estimates of the theoretical number 
of .1579. Try APL yourself my website jerrymbrennan.com

      avg←(+⌿ ÷ ≢) ⋄ 5×avg{avg{1 1≡1 2∊4?⍵}¨10000000⍴⍵}¨5⍴20 

 0.1579821 

With APL there are a number of somewhat similar ways to compute this 
percentage. Below are 4 different ways compared to see which is fastest 
using a builtin timer program ]runtime with 4 input strings of the 4 
different methods. It looks like the above method tested first below using 
membership ∊ is not the fastest though the fourth method using union ∩ 
only takes 5% less time. Reduction ∧/  and Plus Reduction +/ both seem to 
take a bit longer.  

Now below is a long one line APL call to util program ]runtime passing it 
the 4 method & below that are 4 result times compared: 

]runtime '5×avg{1 1≡1 2∊4?⍵}¨100000⍴20' '5×avg{∧/1 2∊4?⍵}¨100000⍴20' 
'5×avg{2=+/1 2∊4?⍵}¨100000⍴20' '5×avg{1 2≡1 2∩4?⍵}¨100000⍴20' -compare 

  5×avg{1 1≡1 2∊4?⍵}¨100000⍴20 → 3.4E¯1 |   0% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕      
* 5×avg{∧/1 2∊4?⍵}¨100000⍴20   → 3.9E¯1 | +12% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕  
* 5×avg{2=+/1 2∊4?⍵}¨100000⍴20 → 3.7E¯1 |  +6% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕    
* 5×avg{1 2≡1 2∩4?⍵}¨100000⍴20 → 3.3E¯1 |  -5% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕        

Now go to JMB.APLCloud.com where you can try all the APL examples or any 
other APL you want. There’s also my 60 page pdf manual with many more 
examples & many online tutorial, videos teaching APL, complete interactive 
statistics package, links to getting educational APL free and 800 page free 
download pdf APL manual. If questions please email me Jerry M Brennan PhD 
at jbrennan@hawaii.rr.com or go to my website at jerrymbrennan.com 

mailto:jbrennan@hawaii.rr.com
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Generate Numbers 1-10 From Digits 1-4 Using APL Symbols **** 
Your assignment is to find APL symbols that operate on vector: a←⍳4 and 
find a set of symbols that will generate each of the numbers 1-10 with the 
fewest characters. For example: a[1] or 1⊃a would both work to generate 1. 
The second one is preferred as it uses less characters(3 instead of 4). 

HERE IS A PROGRAM I WROTE TO SCORE YOUR RESULTS.  

  ScoreNumbers←{ ⍝ ⍵ rt arg is your trys ie '1↑a' '-/⌽a' etc 
  ⍺←(⍳10)(⍳4) ⍝ default left arg is answers & #'s to use 
  ans←1⊃⍺ ⋄ a←2⊃⍺ ⍝ answers & "a" values to use to get answers 
  avg←{(+/⍵)÷⍴⍵} ⍝ define average fns 
  try←,¨(⍴ans)↑⍵,500⍴⊂'¯99' ⍝ expand your trys to = the length of ans 
  try←(¯1+try⍳¨'⍝')↑¨try  ⍝ elim comments on lines 
  r←⊂'1=right 0=wrong: ',⍕score←⊃¨ans=⍎¨try 
  r,←⊂'Lengths of each: ',⍕⊃¨⍴¨try 
  r,←⊂'# and % correct: ',(⍕n),7 2⍕100×(n←+/score)÷⍴score 
  r,←⊂'Correct avg len: ',⍕avg⊃¨⍴¨score/try 
  ↑r 
  ⍝ ans for: (⍳20)(⍳4) ScoreNumbers one2four [#’s 1-20 using 1-4]  
  ⍝ ans for: (0,⍳20)(4⍴4) ScoreNumbers fourfour [#’s 0-20 using 4 4 4 4] 
 }

So if you had 3 answers done you could score it like this: 

      Mytries←'1↑a' '-/⌽a' 'a[3]' 
ScoreNumbers Mytries 

1=right 0=wrong: 1 1 1 0 0 0 0 0 0 0 
Lengths of each: 3 4 4 1 1 1 1 1 1 1 
# and % correct: 3 30 
Correct avg len: 3.666666667  

EXTRA CREDIT 1: Find the numbers 1-20. Change ScoreNumbers default left 
argument in line1 to (⍳20)(⍳4) like this: (⍳20)(⍳4) ScoreNumbers Mytries
Note also the 0’s to fill unknowns if you are not sure of some of them. 

      Mytries←'1↑a' '-/⌽a' 'a[3]' '0' '0' '0' '0' '0' '0' '0' '0'  '×/2↓a' 
      (⍳20)(⍳4) ScoreNumbers Mytries 
1=right 0=wrong: 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
Lengths of each: 3 4 4 0 0 0 0 0 0 0 0 5 3 3 3 3 3 3 3 3 
# and % correct: 4 20 
 3  4  4  5  
Correct avg len: 4 ⍝ my correct solution for ⍳20 was 7.7. can you beat it? 

EXTRA CREDIT 2: Use as you input 4 4’s & find numbers 0-20. You must use 
all 4 4’s to get each number. Here’s my answers(hidden in variable X). Can 
you beat it? 

(0,⍳20)(4⍴4) ScoreNumbers X 
1=right 0=wrong: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Length of each:11 11 13 11 15 16 14 13 6 13 17 13 13 12 11 13 3 13 15 24 13 
# and % correct: 21 100 
11 11 13 11 15 16 14 13 6 13 17 13 13 12 11 13 3 13 15 24 13 
Correct avg len: 12.85714286 
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GENERATE NUMBERS - SOME ANSWERS FOR: 1-20 USING ⍳4 AND 4⍴4  
Possible answers for : First find #’s 1-20 using a←⍳4 (1 2 3 4) 
(⍳20)(⍳4) ScoreNumbers one2four ⍝ use some or all digits repeats allowed 

1↑a                        ⍝  1 
2⊃a                        ⍝  2 
3⊃a                        ⍝  3 
3↓a                        ⍝  4 
+/a[1 4]                   ⍝  5 
!/a                        ⍝  6 
+/2↓a                      ⍝  7 
×/a[2 4]                   ⍝  8 
*/1↓⌽a                     ⍝  9 
+/a                        ⍝ 10 
(×/a[3 4])-1⊃a             ⍝ 11 
×/a[3 4]                   ⍝ 12 
a[1]+×/a[3 4]              ⍝ 13 
a[2]×+/2↓a                 ⍝ 14 
a[3]+×/2↓a                 ⍝ 15 
(4⊃a)*2                    ⍝ 16 
a[1]+(4⊃a)*2               ⍝ 17 
a[3]××/a[2 3]              ⍝ 18 
(*/a)+a[2]×*/1↓⌽a          ⍝ 19 
+/2/a                      ⍝ 20 
Lengths of each: 3 3 3 3 8 3 5 8 6 3 14 8 13 10 10 7 12 13 17 5 avg=7.7 

Possible answers for : Now find #’s 0-20 using a←4⍴4 (4 4 4 4) 
(0,⍳20)(4⍴4) ScoreNumbers fourfour    ⍝ note: You must use every 4 once. 

+/(2↑a)-2↓a                ⍝  0 
×/(2↑a)÷2↓a                ⍝  1 
(÷/2↑a)+÷/2↓a              ⍝  2 
(+/3↑a)÷3↓a                ⍝  3 
a[1]+a[2]×-/2↓a            ⍝  4 
(a[3]+×/2↑a)÷3↓a           ⍝  5 
(+/!2↑a)÷+/2↓a             ⍝  6 
(+/2↑a)-÷/2↓a              ⍝  7 
-/⌽+\a                     ⍝  8 
(÷/2↑a)++/2↓a              ⍝  9 
+/a[1]+a[2 3]÷4⊃a          ⍝ 10 
(+/3↑a)-⌊⍟3↓a              ⍝ 11 
(×/2↑a)-⌊/2↓a              ⍝ 12 
(+/3↑a)+⌊⍟4                ⍝ 13 
(+/3↑a)+⌈⍟4                ⍝ 14 
(×/2↑a)-÷/2↓a              ⍝ 15 
+/a                        ⍝ 16 
(×/2↑a)+÷/2↓a              ⍝ 17 
(×/2↑a)++/⌊⍟2↓a            ⍝ 18 
(×/a[2 3])+(⌈⍟1↑a)+⌊⍟3↓a   ⍝ 19 
(×/2↑a)+⌊/2↓a              ⍝ 20 
Lens:11 11 13 11 15 16 14 13 6 13 17 13 13 12 11 13 3 13 15 24 13 avg=12.8
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WORKING WITH TABLES ** 
Company wants to compare actual & forecasts for 4 products for 6 months.  

     Forecast←4 6⍴150 200 100 80 80 80 300 330 360 400 500 520 100 250 350 
 380 400 450 50 120 220 300 320 350  ⍝ Forecast reshape(⍴) to 4x6 table

     Actual←4 6⍴141 188 111 87 82 74 321 306 352 403 497 507 118 283 397 
 424 411 409 43 91 187 306 318 363   ⍝ Actual reshape(⍴) to 4x6 table 

      Forecast 
150 200 100  80  80  80 
300 330 360 400 500 520 
100 250 350 380 400 450 
 50 120 220 300 320 350 

      Actual 
141 188 111  87  82  74 
321 306 352 403 497 507 
118 283 397 424 411 409 
 43  91 187 306 318 363 

    Forecast-Actual 
  9  12 ¯11  ¯7  ¯2   6 
¯21  24   8  ¯3   3  13 
¯18 ¯33 ¯47 ¯44 ¯11  41 
  7  29  33  ¯6   2 ¯13 

      Forecast,¨Actual 
 150 141  200 188  100 111  80 87    80 82    80 74    
 300 321  330 306  360 352  400 403  500 497  520 507  
 100 118  250 283  350 397  380 424  400 411  450 409  
 50 43    120 91   220 187  300 306  320 318  350 363 

      +fa←(⊂4 0)⍕¨Forecast,¨Actual ⍝ each col is 4 wide with 0 decimals
  150 141   200 188   100 111    80  87    80  82    80  74  
  300 321   330 306   360 352   400 403   500 497   520 507  
  100 118   250 283   350 397   380 424   400 411   450 409  
   50  43   120  91   220 187   300 306   320 318   350 363  

      (⊂4 0)⍕¨Forecast,¨Actual,¨Forecast-Actual 
  150 141   9   200 188  12   100 111 ¯11    80  87  ¯7    80  82  ¯2    80  74   6  
  300 321 ¯21   330 306  24   360 352   8   400 403  ¯3   500 497   3   520 507  13  
  100 118 ¯18   250 283 ¯33   350 397 ¯47   380 424 ¯44   400 411 ¯11   450 409  41  
   50  43   7   120  91  29   220 187  33   300 306  ¯6   320 318   2   350 363 ¯13 

      ((⊂'Prod\Month'),⍕¨⍳1↑⍴fa),((⍕¨⍳1↓⍴fa),¨6⍴⊂':Fo Act')⍪fa ⍝ label rows & cols
 Prod\Month  1:Fo Act  2:Fo Act  3:Fo Act  4:Fo Act  5:Fo Act  6:Fo Act  
 1            150 141   200 188   100 111    80  87    80  82    80  74  
 2            300 321   330 306   360 352   400 403   500 497   520 507  
 3            100 118   250 283   350 397   380 424   400 411   450 409  
 4             50  43   120  91   220 187   300 306   320 318   350 363 
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Plotting Regular Polygons ** 
R←PolyPlot(n s);y;x;y;foot;range;x0;y0;Deg2Rad;theta;i;radius;py;px;pct;area;apothem 
 ⍝ n is # sides s=side length. So: PolyPlot 5 10 plots 5 sided polygon with each side=10 
 Deg2Rad←{⍵×○1÷180}  ⍝ fns to convert degrees to radians for input to trigonometric fns 

 radius←s÷2×1○Deg2Rad 180÷n             ⍝ center to a vertex    1○ is sine
 apothem←s÷2×3○Deg2Rad 180÷n            ⍝ center to midpt side  3○ is tangent
 area←(n×s*2)÷4×3○Deg2Rad 180÷n         ⍝ area of polygon       3○ is tangent 

 x0←y0←0 ⍝ x y location of center of polygon on plot
⍝ see http://www.mathopenref.com/polygonregulararea.html for following formulas 

 theta←(360÷n)×i←0,(⍳n-1),0 ⍝ theta is angle with the x axis plot based on # of sides (n)
 x←x0+radius×2○Deg2Rad theta+i×(2×○1)÷n ⍝ x vertice locations   2○ is cosine
 y←y0+radius×1○Deg2Rad theta+i×(2×○1)÷n ⍝ y vertice locations   1○ is sine 

 ch.New 350 350  ⍝ trying to make x y lengths the same but failing
 ch.Set'Head'((⍕n),' Sided Polygon - side length is ',⍕s) 
 ch.Set'Footer'(('Perimeter=',⍕n×s),(' Radius=',⍕4⍕radius),(' Apothem=',⍕4⍕apothem),(' 
Area=',⍕4⍕area)) 
 ch.Set¨(⊂¨'Xrange' 'Yrange'),¨range←⊂¯1 1×⌈/|x,y 
 ch.Set¨('Xint' 0)('Yint' 0)('forcezero')('XYPLOT,GRID') 
 ch.Set'style' 'surface' 
 ch.Plot⍉↑x y 
 PG←ch.Close 
R←'View PG ⍝ to see it' 

PolyPlot 3 10 
View PG ⍝ to see it 

PolyPlot 7 10 
View PG ⍝ to see it 



By Jerry M Brennan Page 58 of 68 5/28/2020

Plotting Any Triangle Given Some Sides & Angles ** 
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NOTES FOR ALL TRIANGLE EQUATIONS AND APL SOLUTIONS ***** 
SYMBOLS USED: (http://www.mathsisfun.com/algebra/trig-solving-practice.html)
A B C are angles in degrees and a b c are side lengths opposite those 
angles. Ar Br Cr are angles in radians which APL often uses. ○1 is 
pi(π) in APL. A radian is a way of expressing an angle in terms of a 
circle’s radius. 
1 Radian=180°÷π. or about 57.2958 degrees(180÷3.141592654) & 57.29581× π =180 degrees 

PRELIMINARY FORMULAS as programs: 

DegToRad←{⍵×○1÷180}    ⍝ ○1 is pi in APL, so DegToRad 57.2958 would result in 1
RadToDeg←{⍵÷○1÷180}    ⍝ and RadToDeg 1 would result in 57.2958 
sin←{1○DegToRad ⍵}     ⍝ 1○ is sine fns in APL so sin 30 finds sine of 30deg 
cos←{2○DegToRad ⍵}     ⍝ 2○ is cosine  so cos 45 finds cosine of 45deg 
arcsin←{RadToDeg ¯1○⍵} ⍝ convert sine   of angle in radians to angle in degrees 
arccos←{RadToDeg ¯2○⍵} ⍝ convert cosine of angle in radians to angle in degrees 

1)Triangle Angles Add to 180 degrees: 
 If we have 2 angles we can get the 3rd because their sum=180. 
 A+B+C=180 degrees so in APL C←180-A+B or B←180-A+C or C←180-A+B

2)Law of Sines:  
 So if we have couple of angles and a side or a couple of sides and an angle 
 we can find other side. (ie if we have A and a and B we can determine b) 
(a÷sin A)=(b÷sin B)=(c÷sin C) or reciprocals:((sin A)÷a)=((sin B)÷b)=((sin C)÷c) 

3)Law of Cosines: 
(c*2)=(a*2)+(b*2) for right triangle  
(c*2)=(a*2)+(b*2)-2×a×b×cos C for any triangle C in degrees  

4)Area of a triangle:  

area←×/0.5 a b(sin C) ⍝ or for a right triangle C=90° & sin 90 =1 so area =.5×a×b×1 

So with these 4 basic formulas we can solve all triangle problems 

HERE ARE 7 FUNCTIONS THAT SOLVE ALL POSSIBLE TRIANGLE PROBLEMS: A=angle S=side  
TriAA TriAAA TriAAS TriASA TriSAS TriSSA TriSSS  

EXAMPLE USAGE:  capitals A B C are angles. Small letters a b c are side lengths 
If a triangle had 3 sides: 3,4,5 do this: 

      TriSSS 3 4 5  ⍝ Type in 3 sides(3,4,5) & get all angles & area info back.
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If a triangle had 2 angles and a side 10 degrees 15 degrees and side 8.5 do this: 

      TriAAS 10 15 8.5 

If a triangle had an angle 10, then a side 8.5 and then an angle 15 do this: 

      TriASA 10 8.5 15 

      TriSAS 3 90 4                   ⍝ this is right triangle so a*2 + b*2 = c*2 

⍝ area is (a×b)÷2 
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TriSSA 3 4 37 ⍝ there are two possible solutions for this problem

There are a number of triangles which are impossible, angles cannot sum to more 
than 180 degrees & one side cannot be longer than the sum of the other two sides.  

      TriAAS 100 95 8.5 
INVALID ∆ 2 input angles sum≥180: 100 95 

      TriSSS 3 4 8  ⍝ impossible triangle c>a+b 
INVALID ∆ (longest side)≥(sum other 2 sides):a b c= 3 4 8  

Finally some combinations of angles and sides are not possible as indicated in 
the example below where TriSSA finds imaginary numbers noted in APL with J. 
TriSAS 3 90 4 is the 3 4 5 right triangle, but TriSSA 3 4 90 is impossible in two 
different ways as is show below. 

      TriSSA 3 4 90 ⍝ many other combs/orders of angles & sides are also invalid. 
INVALID ∆ (imaginary side length(side with J in it:a b c= 3 4 0J2.6458 A B C= 90 
90J¯45.5711 0J45.5711 area= 0J5.2915 [Alt  1 ] 
INVALID ∆ (imaginary side length(side with J in it:a b c= 3 4 0J¯2.6458 A B C= 90 
90J45.5711 0J¯45.5711 area= 0J¯5.2915 [Alt  2 ] 

HERE ARE THE ACTUAL FUNCTIONS: 

TriAA←{⍝ Triangle info given AngleAngle
     C←180-+/A B←⍵ ⍝ input: 2 angles A B
     in←(C<0)/'INVALID ∆ 2 input angles sum≥180:' 
     in,'A B C=',A,B,C,'a b c area=Need at least 1 side to do more'} 

TriAAA←{⍝ Triangle info given AngleAngleAngle 
     in←(180≠+/⍵)/'INVALID ∆ 3 input angles not equal to 180:' 
     in,'A B C=',⍵,'a b c area=Need at least 1 side to do more'} 

TriAAS←{⍝ Triangle info given Angle Angle Side 
C A c←⍵ ⍝ A C=angles c=side opposite angle C 

     B←180-+/A C           ⍝ missing angle B=180-(A+C)
     B<0:'INVALID ∆ 2 input angles sum≥180:',C,A 

⍝ law of sines is (a÷sin A)=(b÷sin B)=(c÷sine C) 
     a←(c×sin A)÷sin C     ⍝ solve law of sines for a
     b←(c×sin B)÷sin C     ⍝ solve law of sines for b
     area←×/0.5 a b(sin C) ⍝ .5×base×ht [ht=b×sin C]
     ('a b c=',(4 round a b c),'A B C=',(4 round A B C),'area=',4 round 
area)TriPlotSSS a b c} 

TriASA←{⍝ Triangle info given AngleSideAngle 
     A c B←⍵ ⍝ A C=angles c=side opposite angle C
     C←180-+/A B           ⍝ missing angle C=180-(A+B)
     C<0:'INVALID ∆ 2 input angles sum≥180:',A,B 
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⍝ recall law of sines: (a÷sin A)=(b÷sin B)=(c÷sine C) 
     a←(c×sin A)÷sin C     ⍝ solve sine law for a using C
     b←(c×sin B)÷sin C     ⍝ solve sine law for b using C
     area←×/0.5 a b(sin C) ⍝ .5×base×ht [ht=b×sin C]
     ('a b c=',(4 round a b c),'A B C=',(4 round A B C),'area=',4 round 
area)TriPlotSSS a b c}

TriSAS←{⍝ Triangle info given SideAngleSide 
     a C b←⍵ ⍝ a=side1 C=angle between b=side2
     c←0.5*⍨(+/a b*2)-(×/2 a b)×cos C ⍝ c=sqrt(a2+b2 - 2ab×Cos C

⍝ Note: law of sines (sin A/a) = (sin B/b) = (sin C/c) 
     SinAr←(a×sin C)÷c     ⍝ solve sine law for sine A(in radians)
     A←arcsin SinAr        ⍝ convert sine A in radian to angle in deg
     B←180-+/A C           ⍝ missing angle B=180-(A+C)
     area←×/0.5 a b(sin C) ⍝ .5×base×ht [ht=b×sin C]
     ('a b c=',(4 round a b c),'A B C=',(4 round A B C),'area=',4 round 
area)TriPlotSSS a b c}

TriSSA←{⍺←0 ⍝ Triangle info given SideSideAngle. There are 2 possible triangles
     a b A←⍵ ⍝ a=side opposite angle A  b=side ⍝ Note: this program runs twice
     Ar←DegToRad A         ⍝ convert A to radians

⍝ recall law of sines is : (a÷sin Ar)=(b÷sin Br)=(c÷sin Cr) 
⍝ solve law of sines for sin b: sin b=(b×sin a)÷a 

     SinBr←(b×sin A)÷a     ⍝ solve sine law for sin of B(in radians)
     B←arcsin SinBr        ⍝ convert sine of Br in radians to B in degrees
     B←(⍺+1)⊃B,180-B       ⍝ pick B(⍺=0) or 180-B(⍺=1) for 2 possible b angles
     C←180-+/A B           ⍝ ⍝ missing angle C=180-(A+B)
     c←(b×sin C)÷sin B     ⍝ solve law of sin's for c=(b×sin C)÷sin B
     area←×/0.5 a b(sin C) ⍝ .5×base×ht [ht=b×sin C]
     ⎕←('a b c=',(4 round a b c),'A B C=',(4 round A B C),'area=',(4 round 
area),'[Alt ',(⍺+1),']')TriPlotSSS a b c 
     ⍺=0:1 ∇ ⍵}  ⍝ call TriSSA (∇) again with same inputs(⍵) but ⍺=1 picks 180-B} 

TriSSS←{⍝ Triangle solution given 3 sides 
     a b c←⍵                               ⍝ input: 3 sides
     ⍝ note:arccosine=¯2○ It converts cosine to angle in radians 
     ⍝ recall cosine fns is: (a*2)=(b*2)+(c*2)-2×b×c×cosine Ar 
     A←arccos((+/(b c)*2)-a*2)÷×/2 b c ⍝ Cosine function solved for A
     B←arccos((+/(c a)*2)-b*2)÷×/2 c a ⍝ Cosine function solved for B
     C←180-+/A B                       ⍝ missing angle C=180-(A+B)
     area←×/0.5 b c(sin A)             ⍝ .5×base×ht [ht=c×sin A]
     ('a b c=',(4 round a b c),'A B C=',(4 round A B C),'area=',4 round 
area)TriPlotSSS a b c}

Bingo **** 
Imagine 5x5 Bingo game where Bingo numbers are determined by simple math(2 
numbers added, subtracted, multiplied or divided). For example the caller 
might say “2 times 4” and if you had an 8 on your board you would put an X 
over the 8. What would be the best numbers(1-50 no duplicates) for you to 
place on your board? Well add and subtract are unbiased but for multiply 
and divide some numbers have more factors and thus will occur more often. 
Lets find best numbers to put on your board so you can win the Bingo game. 

factors←{(r=⌊r←⍵÷n)/n←⍳⌊⍵÷2} ⍝ fns to find all factors for a number. 
factors 30    ⍝ call fns factors passing 30 into the program(⍵) 



By Jerry M Brennan Page 64 of 68 5/28/2020

1 2 3 5 6 10 15     ⍝ these are the factors of 30 

Let me explain the above factors program from right to left. ⍵ which is 30 
is ÷2(since no factor can be greater than ½ the number). ⌊ rounds the 
number down if it is a decimal and ⍳ makes the numbers from 1-15 and 
stores them in n. r is ⍵(30)÷each n(numbers 1-15). ⌊rounds the results(r) 
down and = compares each r to it’s rounded r. If r=⌊r the division must 
have come out even and thus n must be a factor. The expression inside the 
() will be 15 1’s and 0’s showing which values of n are factors of 30. The 
syntax (r=⌊r)/n selects only n’s which have 1’s. Here 30÷1 2 3 … 15 has 
even results for 1 2 3 5 6 10 15 which are the factors for 30.  

Now lets find all factors for each(¨) number 1-50(⍳50). Then catenate(,) 
factors with each(¨) of the numbers and make a table(⍉↑) for viewing. 

⍉↑(⍳50),¨factors¨⍳50    ⍝ row 1 is the #, other rows are the factors 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
0 1 1 1 1 1 1 1 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
0 0 0 2 0 2 0 2 3  2  0  2  0  2  3  2  0  2  0  2  3  2  0  2  5  2  3  2  0  2  0  2  3  2  5  2  0  2  3  2  0  2  0  2  3  2  0  2  7  2 
0 0 0 0 0 3 0 4 0  5  0  3  0  7  5  4  0  3  0  4  7 11  0  3  0 13  9  4  0  3  0  4 11 17  7  3  0 19 13  4  0  3  0  4  5 23  0  3  0  5 
0 0 0 0 0 0 0 0 0  0  0  4  0  0  0  8  0  6  0  5  0  0  0  4  0  0  0  7  0  5  0  8  0  0  0  4  0  0  0  5  0  6  0 11  9  0  0  4  0 10 
0 0 0 0 0 0 0 0 0  0  0  6  0  0  0  0  0  9  0 10  0  0  0  6  0  0  0 14  0  6  0 16  0  0  0  6  0  0  0  8  0  7  0 22 15  0  0  6  0 25 
0 0 0 0 0 0 0 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  8  0  0  0  0  0 10  0  0  0  0  0  9  0  0  0 10  0 14  0  0  0  0  0  8  0  0 
0 0 0 0 0 0 0 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 12  0  0  0  0  0 15  0  0  0  0  0 12  0  0  0 20  0 21  0  0  0  0  0 12  0  0 
0 0 0 0 0 0 0 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 18  0  0  0  0  0  0  0  0  0  0  0 16  0  0 
0 0 0 0 0 0 0 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 24  0  0 

Looking at the table we can see that 48 has the most factors and odd 
numbers generally are much poorer than even numbers. Now lets put these 
results in order by the number of factors(⍴). First lets get counts: 

+m←⍉↑(⍳50),¨⍴¨factors¨⍳50      ⍝ row 1 is the #, row 2 is the # of factors 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
0 1 1 2 1 3 1 3 2  3  1  5  1  3  3  4  1  5  1  5  3  3  1  7  2  3  3  5  1  7  1  5  3  3  3  8  1  3  3  7  1  7  1  5  5  3  1  9  2  5 

m[;⍒m[2;]] ⍝ Descending Sort(⍒) using row 2 of m to sort m
48 36 24 30 40 42 12 18 20 28 32 44 45 50 16 6 8 10 14 15 21 22 26 27 33 34 35 38 39 46 4 9 25 49 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 1 
 9  8  7  7  7  7  5  5  5  5  5  5  5  5  4 3 3  3  3  3  3  3  3  3  3  3  3  3  3  3 2 2  2  2 1 1 1 1  1  1  1  1  1  1  1  1  1  1  1 0 

In the above m is a matrix with 2 rows and 50 columns. m[rows;columns]. So 
⍒m[2;] takes row 2 values of matrix & determines their reverse sort order. 
48 36 24 30 40 42 12 18 20 28 32 44 45 50 16 6 8 10 14 15 21 22 26 27 33 34 35 38 39 46 4 9 25 49 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 1 

so highest value is col 48 which is in this case 48. Worst value is in 
column 1 which is 1. So now you can pick best values for your Bingo game 
easily. I would suggest putting best values all in same row or column. So 
your first row or column might be 48 36 24 30 40 and next row/column might 
then be 42 12 18 20 28 etc. These would have highest odds of winning. 
Now verify by testing if this is correct. Here’s fns that makes 3 different 
Bingo cards(numbers with fewest, random or most factors) and then evaluates 
them with random product numbers and sees which card wins(5 in row).  

res←Bingo ss;FactorCalc;facts;boardL;boardM;boardR;calls;prods;RCMAX;n;z;bL;bR;bM 
⍝ Evaluate 5×5 Bingo games with boards #'s 4-50 constructed in 3 ways: 
⍝    1)Least factors, 2)Most factors 3)Random #'s 
⍝ show steps ss=( 0:no 1:partial 2: play mode-full details and pause at each step) 
⍝      use: +/5=⍎¨1000⍴⊂'Bingo 0'  to test program 1000 times and show winner boards 
⍝ Bingo calls are determined by multiplying 2 random numbers 2-25 
 FactorCalc←{(r=⌊r←⍵÷nums)/nums←⍳⌊⍵÷2} ⍝ fns to determine factors
 facts←⊃,/⍴¨FactorCalc¨3+⍳47 ⍝ get factors for #'s 1-50 
 boardL←5 5⍴3+⍋facts           ⍝ 1)board with #'s with least factors (sort up) 
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 boardM←5 5⍴3+⍒facts           ⍝ 2)board with #'s with most  factors (sort down) 
 boardR←5 5⍴3+25?47          ⍝ 3)board with #'s random(?) 4-50 no duplicates 

⍝ n unique(∪) product(×/¨) #'s <50 from 5000 random(?) pairs of #'s (2-25) 

 prods←×/¨calls←∪(50>×/¨calls)/(calls←1+?5000⍴⊂24 24) ⍝ gen random product Bingo calls
 calls←calls[prods⍳∪prods] ⋄ prods←∪prods ⍝ keep only calls with unique(∪) products
 RCMAX←{(⌈/+/⍵)⌈(⌈/+⌿⍵)}   ⍝ fns:Row Col MAX: ⍵ is input i.e. 5×5 board 
                           ⍝ fns gets largest(⌈/) rowsum(+/) or colsum(+⌿) 
 :For n :In ⍳⍴calls        ⍝ loop :For each call:count each boards matches
     res←RCMAX¨(bL bR bM←boardL boardR boardM∊¨⊂n↑prods) ⍝ score each board for trial 
     :If ss>0 ⋄ '  Least=' '   Random=' '    Most=' 'Hits for Trial=' '#=',¨res,n,calls[n] 
     :EndIf 
     :If ss>1 
         ⍞←'Enter to see trial results or b:see full boards or q:quit ' ⋄ z←¯1↑⍞ ⍝ ask&wait 
         '|',¨bL bR bM×boardL boardR boardM   ⍝ show scored boards each step if ss>1 
         :If z≡,'b' 
             '   Least Factors     Random# Factors   Most Factors' ⋄ '|',¨boardL boardR boardM 
         :ElseIf z≡,'q' ⋄ →0 ⍝ exit(go to zero) if response is "q" 
         :EndIf 
     :EndIf 
     →0×⍳5∊res ⍝ exit(go to zero) if any board wins:row/col sum matches(∊) a 5 ⍝ to Play through
 :EndFor

Now lets play Bingo by trying the 
Bingo fns a couple times. 
     Bingo 1 
Least= 0 Random= 1 Most= 1 Hits for Trial= 1 #=2 8 
Least= 1 Random= 1 Most= 1 Hits for Trial= 2 #=2 3  
Least= 1 Random= 1 Most= 1 Hits for Trial= 3 #=2 17 
Least= 1 Random= 1 Most= 2 Hits for Trial= 4 #=11 4  
Least= 1 Random= 2 Most= 2 Hits for Trial= 5 #=4 3  
Least= 1 Random= 2 Most= 2 Hits for Trial= 6 #=3 16  
Least= 1 Random= 2 Most= 2 Hits for Trial= 7 #=13 2  
Least= 1 Random= 2 Most= 3 Hits for Trial= 8 #=9 4  
Least= 1 Random= 2 Most= 3 Hits for Trial= 9 #=6 4  
Least= 1 Random= 2 Most= 3 Hits for Trial= 10 #=3 7 
Least= 1 Random= 2 Most= 4 Hits for Trial= 11 #=4 8 
Least= 1 Random= 2 Most= 5 Hits for Trial= 12 #=2 21 
1 2 5 

Bingo 1 
Least= 0 Random= 0 Most= 1 its for Trial= 1 #= 3 7  
Least= 0 Random= 0 Most= 1 its for Trial= 2 #= 2 20  
Least= 0 Random= 0 Most= 2 its for Trial= 3 #= 18 2  
Least= 0 Random= 1 Most= 2 its for Trial= 4 #= 4 11  
Least= 1 Random= 1 Most= 2 its for Trial= 5 #= 2 2  
Least= 1 Random= 1 Most= 3 its for Trial= 6 #= 8 3  
Least= 1 Random= 1 Most= 3 its for Trial= 7 #= 2 16  
Least= 1 Random= 1 Most= 4 its for Trial= 8 #= 3 16  
Least= 1 Random= 1 Most= 4 its for Trial= 9 #= 2 8  
Least= 1 Random= 1 Most= 4 its for Trial= 10 #= 19 2  
Least= 1 Random= 1 Most= 5 Hits for Trial= 11 #= 5 6 
1 1 5 

As you can see the board using 
numbers with the Most factors won 
both times. I tested this 1000 
calls: +/5=⍎¨1000⍴⊂'Bingo 0' and 
got:11 61 952. So Most wins (or 
ties) 95.2%(952÷1000) of the time.  

In the game originally described 
not all calls are made from 
multiplication. Some were also made 
from addition, subtraction and 
division. Addition would have bias 
towards larger numbers while 
subtraction would have bias towards 
smaller numbers but overall 
advantage for boards with more 
factors would be smaller. What is 
the bias for division?  

If you call the program like this: 

Bingo 2 

It will play in an interactive mode 
where you can watch each of 3 
boards be scored at each step. 
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Writing Web page using APL Using Mildserver *** 
An APL Class is created called Reverse. Automatic Code(MiPage & HTMLInput) 
is included which does most of the work creating webpage & converting APL 
to HTML in the Render fns. DoAction fns checks which Action button was 
pressed Clear or Reverse & does what Submit Caption says: If ‘Reverse’
letters in Name reversed Name←⌽Name. If ‘Clear’ Name set to null Name←’’.

Below is Web Page before & after you press Reverse button. Notice reversed 
text. If you pressed Clear button Text would be erased & pressing Home
changes webpage to the parent webpage. To see goto jerrymbrennan.com click 
APL Apps on MiServer at bottom of page, then ALL then Simple MiPage with form. 
Click the orange snake to see the above code and again to see below code. 
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APL References & Info About My Website And Access To It 
For educational use you can get a free version of this APL at: 
http://dyalog.com/ This includes everything. There are thousands of pages 
of online manuals and tutorials describing everything available.  

Eight Intro Dyalog APL education videos: Do APL101-APL108 first. 
https://www.youtube.com/playlist?list=PL1955671BD6E21548

Online Dyalog APL tutorial with a sandbox where you can try out lines of 
APL code such as from this tutorial except for the plotting things. 
www.tryapl.org

Complete APL tutorial(not Dyalog specific) with a sandbox at: 
http://aplwiki.com/LearnApl/LearningApl

Repository of articles, videos and tutorials about APL: http://aplwiki.com

Video shows Game of Life in APL. Video demos the amazing power & 
conciseness of APL. http://www.youtube.com/watch?fmt=18&gl=GB&hl=en-
GB&v=a9xAKttWgP4

More educational videos at: http://www.youtube.com/user/APLtrainer

Extensive(800+ pages) Dyalog APL tutorial book you can download for free 
http://dyalog.com/mastering-dyalog-apl.htm  or 
http://dyalog.com/uploads/documents/MasteringDyalogAPL.pdf

http://en.wikipedia.org/wiki/APL_(programming_language) A Programming 
Language (APL). History and advantages of APL described. 

Some information about Kenneth E. Iverson the inventor of APL. He was a 
Harvard Mathematics Professor, worked for IBM and won a Turing Award for 
creating APL. He first developed APL as a concise notation for mathematics. 
Later he developed it as a comprehensive computer language. 
http://en.wikipedia.org/wiki/Kenneth_E._Iverson

My APL Educational Web page. Goto: http://JMB.APLCloud.com or my web page 
http://jerrymbrennan.com/ & click on APL Lessons using MiServer at page 
bottom to see menu below of many interactive example APL web pages of 
games, lessons and math and language utilities. Click orange dragon upper 
left on every page to see actual APL code for that page & Home button takes 
you back to main menu. Click Practice using live APL below to try all the 
examples in this handout yourself or do anything else. Play numerous games, 
watch videos, do many interactive tutorials and learn about your logical 
thinking errors and then see the actual code that created everything. (SEE 
NEXT PAGE FOR MAIN MENU Note: there are many submenus also)

http://dyalog.com/
http://www.youtube.com/user/APLtrainer
http://www.tryapl.org/
http://aplwiki.com/LearnApl/LearningApl
http://aplwiki.com/
http://www.youtube.com/watch?fmt=18&gl=GB&hl=en-GB&v=a9xAKttWgP4
http://www.youtube.com/watch?fmt=18&gl=GB&hl=en-GB&v=a9xAKttWgP4
http://www.youtube.com/user/APLtrainer
http://www.dyalog.com/MasteringDyalogAPL/MasteringDyalogAPL.pdf
http://dyalog.com/uploads/documents/MasteringDyalogAPL.pdf
http://en.wikipedia.org/wiki/APL_(programming_language)
http://en.wikipedia.org/wiki/Kenneth_E._Iverson
http://jmb.aplcloud.com/
http://jerrymbrennan.com/
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