Some APL Examples
By Jerry M Brennan PhD jbrennan＠hawaii．rr．com（808）538－0343This PDF，all examples \＆most programs \＆more available to try at my website：jerrymbrennan．com（at bottom choose：APL Lessons \＆Examples：Online Tutorials）
TABLE OF CONTENTS（＊＝easy＊＊＊＊＊＝hard）
The Birthday Problem＊ 2
Two Dice－How Lucky Are You？＊＊ 4
Probability of Two Dice Being Equal＊＊＊ 4
Name The Order Of The Presidents＊ 9
Stock Market With APL：Looking and Predicting＊＊＊＊ 10
More Stock Market Calculations＊＊＊ 11
The Power of 11 ＊＊＊． 12
Mortgage Calculations＊＊＊＊ 14
Roots of a Polynomial＊＊＊＊ 15
Quadric Equations and Functions＊＊＊＊＊ 19
Integration：Find Area Below Any Equation in 1 Line APL＊＊＊ 21
Basic Statistics＊＊＊ 23
Kendall＇s Tau ：Rank Order Correlation＊＊＊＊ 25
Linear Regression：compute Best Fit line from raw data＊＊＊＊ 26
Solve Set of Equations Easily with APL（Cons回Coefs）＊＊＊＊ 28
The Horse \＆Mule Problem（WORDS TO ALGEBRA TO APL）＊＊＊ 29
Linear Quad \＆Cubic Regression＊＊＊＊＊reg↔\｛x y＋w 夂 y回x．．＊ф0，$\alpha\}$ 30
Plotting 3 Exponential Functions to Compare＊＊＊＊ 31
Plotting in General in APL＊ 32
Multiple Regression 32
Alien Attack＊ 33
Alien Attack Two＊＊＊＊＊ 34
How Often Will Current Year \div By Your Age Be Even？＊ 37
Are all Numbers of Form abcabc Divisible by 13？＊＊＊ 38
What Is Your Name Worth？ 39
Rate Writing Based Upon Word And Sentence Length＊＊＊ 40
Stylometry：The analysis of text documents＊＊＊＊＊ 41
Four Fun With Numbers＊＊＊＊＊ 43
How Many Draws To Get An Ace？＊＊＊＊ 45
Five Card draw Probabilities 46
An Optimal Stopping Problem：Dating For Dummies＊＊＊＊ 48
The twins problem（using math，Matlab and APL）＊＊＊ 50
Generate Numbers 1－10 From Digits 1－4 Using APL Symbols＊＊＊＊ 54
Plotting Regular Polygons＊＊ 57
Plotting Any Triangle Given Some Sides \＆Angles＊＊ 58
Bingo＊＊＊＊ 63
Writing Web page using APL Using Mildserver＊＊＊ 66
APL References \＆Info About My Website And Access To It 67
By Jerry Brennan Page 1 of 68

The Birthday Problem *

If you go to a party and there are 35 people there what is the chance that two of the people will have the same birthday.
From Wolfram: The odds are about 81%. The formula is listed below. http://www.wolframalpha.com/input/?i=birthday+problem+35+people

Input information:
birthday problem
number of people 35

Result:

> | $\begin{array}{l}\text { probability at least two with the same } \\ \text { birthday }\end{array}$ | 0.8143832388747246 |
| :--- | :--- |

Equation:

$$
\operatorname{Pr}=1-\frac{365!}{365^{n}(365-n)!}
$$

Pr probability at least two with the same birthday
n number of people
$n!$ is the factorial function $\%$

Computed by Wolfram Mathematica
Download as: PDF| Live Mathematica

In APL you can easily create a program to calculate the formula like this:

birthdaysame $\leftarrow\left\{\begin{array}{l}\text { FR }\end{array} 1287\right.$ ॰ $\left.1-(!365) \div(365 * \omega) \times(!365-\omega)\right\}$

The $\quad \mathrm{FR} \leftarrow 1287$ tells APL use double precision arithmetic (needed because of very large factorial \& power calculations). The ω stands for n in the above equation i.e. \# people at party. In APL factorial symbol(!) goes in front of number. Also in APL calculation goes from right to left so the entire denominator is calculated first, then the division occurs and finally the subtraction from 1. All to right of \boldsymbol{A} is a comment \& not executed. Now lets test out the program for the same 35 people at the party.
birthdaysame 35
0.8143832389

A so you enter this for 35 people like above
ค \& computer returns . 81438 same result as above

So there is about an 81% chance that two people will have the same birthday. Lets try a couple of others and see the percents.

	A you enter this for 25 people at the party A get $\sim 57 \%$ of time at least 2 have same birthday A enter this get odds for each(*) 50 \& 66 people a 97% for 50 people and 99.8% for 66 people.
So it looks like once we get	et to about 66 people odds are almost 100\%.
By Jerry Brennan	Page 2 of 68 5/28/2020

NOW LETS PLOT THESE PROBABILITIES **

for all the \#'s of people from 1 to 66. Apl has a special operator called iota
(2$)$ that will easily generate all the numbers for one to any number you want.

```
        \imath6
123456 A monadic \imath called: index generator makes numbers 1-6
    10+28
11 12 13 14 15 16 17 18 A generates numbers 1-8 first then adds 10 to each. So:
```

So here's code line that calculates/plots odds each(") \# of people from 1 to 66.
 View PG a to see it \quad a press enter on this line to see plot
APL has very sophisticated plotting/graphing \& with a little effort we can make a grid line plot. (Y axis:the odds for \# 1-66 by X axis:the \# 1-66) You can see below for example that for 40 people the odds is about 90%. Plotting all possible odd shows a curve not a straight line.

Here's the plot fns : To create it type)ed plotxy press enter and type in R+\{ax0\}plotxy data
ค plot data: $x=c o l 1 \quad y=c o l 2$ or $x=v e c t o r 1 ~ y=v e c t o r 2$
axO $<0=\square N C^{\prime} a \times O^{\prime}$ ค if no axO axes cross at 0
:If 2=झdata \diamond data $\leftarrow \uparrow$ †data \diamond :End
ch.Set'Lines' 1245
ch.Set"(ax0,ax0,1)/('Xint' 0)('Yint' 0)('XYPLOT,GRID')
ch.Plot data $\diamond P G+c h . C l o s e$
R*'View PG A to see it'
Press ESC when the above lines have been entered and then copy in rainpro.)copy rainpro \quad a this will copy in all the fancy APL graphics

Two Dice - How Lucky Are You? **

In APL the ? is used to generate random numbers so

dice \leftarrow \{ \quad Here’s a program to interpret 2 dice throws. To call: dice ?6 6 $\omega \equiv 6$ 6: ω,'Box Cars' \quad i if inputs(ω) match(${ }^{\prime}$)6 6 display Box Cars $\omega \equiv 1$ 1: ω,'Snake Eyes' \quad ค if inputs(ω) match(三)1 1 display Snake Eyes
=/ $\omega: \omega$, 'Pair' \quad a if inputs(ω) are equal(=/) display Pair
$7=+/ \omega: \omega$, Seven' \quad ค if inputs(ω) sum(+/)=7 display Seven
ω, 'Unlucky' \quad a else display Unlucky
\}
dice $\mathbf{? ~}_{6} 6$ a turns 2 6's into random numbers between 1 and 6
25 Seven \quad a result was a 2 and 5 which sums to lucky 7
dice ?6 $6 \quad 9$ try again 2 random numbers between 1 and 6
21 Unlucky $\quad A$ result this time was 2 and 1 which matches none of if's dice" ? $5 \rho c 66$ ค 5 sets(5p) of 2 6’s(c6 6), random \& check each(") set
23 Unlucky 22 Pair 64 Unlucky 23 Unlucky 34 Seven A 5 results

Probability of Two Dice Being Equal ***

Lets do 5 throws of 2 dice. To do this enclose(c) 5 copies(p) of two 6's and let the ? turn all 5 pairs of 6's into random pairs of numbers 1-6:
?5pc6 $6 \quad$ a this is APL command and result is on next line
6221666614 a we got five pairs of numbers (notice extra space between each pair. Also notice we got two pairs (of 6’s). To make APL count matches we put an equal sign(=) between each pair(/") like this.
$=/ * ? 5 \rho c 66$
$00110 \quad$ O The ones tell us which pairs matched: (pairs 3 and 4)
Now lets add these 1 's(with $+/$) getting $2 \&$ divide by 5 to get the odds of . 4 Finally multiply by 100 to get 40 (for 40% matching pairs)

$$
100 \times(+/=/ \cdots ? 5 \rho \subset 66) \div 5
$$

40
A so this time we got 40% matches ($2 \div 5$)
Now lets write a program to do this and call it DiceEqual.
DiceEqual $\leftarrow\{100 \times(+/=/ \cdots ? \omega \rho c 66) \div \omega\}$ A variable omega (ω) replaces 5
Now with ω we can try bigger samples and see if the real underlying probability is indeed 40%. Lets just go for it with a million throws to get a real good idea what the real probability is.

DiceEqual 1000000 a throw pair of dice million times get \% equal $16.6442 \quad$ l looks like about 16.6% of time dice will match (not 40%). Now lets try it 5 times with 100 throws each time("):

DiceEqual" ${ }^{\circ}$ p100

$2726151621 \quad$ a got some variability between 15% and 27% matches Now lets try it 5 times with $1,000,000$ throws each time(")

By Jerry Brennan

DiceEqual" ${ }^{\circ} \mathrm{p} 1000000$

16.603316 .603216 .648816 .685916 .6377 a always got 16.60% to 16.69

From this we can see the advantage of large random samples. Large samples are less variable and they are more accurate. There are actually formulas that allow us to see the actual odds. The probability of two independent random events occurring together is simply the product of the probabilities of each event. In this case each die has 6 sides so the probability of getting say a 3 on one throw is $1 / 6$ and the probability of any particular pattern such as " 3 " is $1 / 6 \times 1 / 6=1 / 36$ which is 1 chance in 36 . In our case we have 6 different ways to get a pair 1 1,2 $2,33,44,55$ and 66 . So the odds of getting a matching pair is $6 / 36$ which equals . 1666666666. Looking back at our 51 million throws we can see that a sample size of $1,000,000$ produces some pretty accurate results while the 5 size 100 samples were not so good. Just for fun lets try $1,000,000$ throws 20 times and average them.

Now lets see if the larger samples are less variable as suggested above by looking at some frequency plots. First I need a rounding function to round the percents to whole numbers so they can be put in categories. APL has the floor function(L) which is useful here. But we can't just use the floor function because it always rounds down.

L1.2 3.41 .8

$131 \quad$ a all numbers are rounded down, but we need 1.8 to be rounded up. A solution is to add . 5 to each number then use the floor(L) function L. $5+1.2$ 3.4 1.8 \quad a so the \#'s become 1.73 .92 .3 and
$132 \quad$ A proper rounding is done. $\lfloor 1.73 .92 .3$ is 132

So here is my round function. It is a little more general than needed here so it can round to any number of decimal places by multiplying the number by some magnitude of 10 , adding .5 , finding the floor then dividing it back down by the same order of 10. It also has a default($\alpha<0$) which says to round to 0 decimal places if nothing else is specified to the left. round $\leftarrow\{\alpha \leftarrow 0 \diamond(\lfloor 0.5+\omega \times 10 * \alpha) \div 10 * \alpha\}$ ρ define the round function round $2345.45678 \quad A$ default round to 0 (whole number)
2345
1 round 2345.45678
A round to 1 decimal place
2345.5

2 round 2345.45678
A round to 2 decimal places
2345.46
-2 round 2345.45678
9 round to 100's place with -2
2300
Next we need a program to put rounded results into categories:

$$
\text { Freq } \leftarrow\left\{\uparrow(\Phi \ddot{ } u)\left(++\omega \omega^{\circ}=u \leftarrow u[\Delta u \leftarrow u \omega]\right)\right\} \quad \text { A Here is the freq program: }
$$

Freq finds unique(u) input values(w), sorts them(u[4u]), makes a table(rows=w \& cols=u) where each row value is matched to each col
value(o..) so each cell is 1 or 0 , then adds up all matches in each col (+f) to determine the frequencies for each unique \#. (+two.=u)

Now we can do some plotting using the built in barchart icon. Lets create 500 10's(500p10) and send each(") to DiceEqual which creates 500 random samples of size 10 of 2 dice tosses and calculates percentage of equal pairs for each of the 500 samples of size 10 . The percentages are passed to round which rounds them to whole numbers and passes them to freq which counts up how many times each unique (u) percentage occurs and creates a table of the values and their frequencies passes this table to DATA where the values and their frequencies are stored. The plus sign(+) at the beginning of line displays 2 row data table that's stored in data

Frequency Bars

We have a range of 0% to 50% matching pairs, showing tremendous variability So 0\% matches occurred 86 times 10% matches occurred 145 times etc.
Now lets try 500 samples of size 100

		+DATA+Freq			round		DiceEqua		500م100			ค 500		samples		of size 100			
6	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
1	5	4	11	27	29	31	44	48	47	56	42	46	33	22	22	12	7	7	6
			qB	D								9	Fr	ue		Bar	char	of	DATA

Frequency Bars

A smaller range of 8% to 26% matching pairs but still lots of variability
Lets try 500 samples of 1,000
+DATA+Freq round DiceEqual"500p1000

13	14	15	16	17	18	19	20	22
2	13	59	149	136	102	31	7	1

FreqBar DATA
A Frequency Bar chart of DATA

Frequency Bars

Even smaller range of only 13% to 22% matching pairs. We are getting close Lets try 500 samples of 10,000 :

```
                +DATA+Freq round DiceEqual" 500p10000 & 500 samples of size 10,000
```

$\begin{array}{lll}16 & 17 & 18\end{array}$
$136358 \quad 6$
FreqBar DATA
ค Frequency Bar chart of DATA

We have a range of only 16% to 18% matching pairs with only 6 at 18 and many more at 17 than 16. Thus we are zeroing in on the theoretical value of 16.66666. A sample size of 10,000 thus almost guarantees a close estimate of the true value. Good scientific research thus tries to get large sample sizes if possible for this reason. Sampling errors becomes a much smaller concern.
Lets try sample size 10,000 again to see if we'll have consistent results: +DATA \leftarrow Freq round DiceEqual" 500010000 a 500 samples of 10,000 again $16 \quad 1718$
1583393
FreqBar DATA
A Frequency Bar chart of DATA
Frequency Bars

We have range of 16% to 18% again and other frequencies are very very close. Replication is another important part of the scientific method in verifying that we are on the right track. Other things we could do to verify this result would be for you to try this on your computer which may have a different random number generator or you could do the 500×10000 dice rolls yourself to check these results. ;)
By Jerry Brennan
Page 8 of 68

Name The Order Of The Presidents *

A clueless student faced a pop quiz to match list of 24 US presidents with another list of 24 terms(years) of office. Being clueless they had to guess every time. On average how many would they guess correctly? \qquad
Since we don't know the probability formula lets run quick Monte Carlo simulations. Use APL random \# generator ? to get the avg \# you'd get by randomly guessing. First simulate match test with only 5 numbers to match.

5?5	A enter this (use 5 not 44 for the moment)
54312	ρ and the numbers 1-5 are rearranged randomly
5?5	9 enter it again
34215	A and get a different order back
$(5 ? 5)=(5 ? 5)$	A compare teachers correct order to your guesses
00110	ρ and you got 2 right (the $3^{\text {rd }}$ and $4^{\text {th }}$ ones).
00000	β and you got 0 right
$+/(5 ? 5)=(5 ? 5)$	a lets add them up so we don't have to count
1	A we got 1 of the 5 right this time.

Now turn this to a function \& run lots of times to see the average result.

avg $\leftarrow\{+/ \omega \div \rho \omega\}$	A first write fns to compute average
presmatch $\leftarrow\{+/(\omega ? \omega)=(\omega ? \omega)\}$	ρ fns counts \# matches for ω presidents
avg presmatch 5	ค test it for 5 presidents
0	ค no matches
avg presmatch ${ }^{100} 05$	ค test 5 pres 100 times using each(*)
0.95	ค average correct $=.95$
avg presmatch ${ }^{*} 100 \rho 5$	A average this time $=1.11$

1.11

Now run 100,000 times \& get more accurate estimate then try 44 presidents. avg presmatch ${ }^{\text {• }} 100000 \rho 5 \quad$ f first for 5 presidents
1.000726
avg presmatch " ${ }^{\text {100000024 }}$
1.000088
avg presmatch ${ }^{\text {" }} 100000125$
.99986

A pretty close to 1
A now for the 24 presidents
A interesting basically 1 again. A what if there were 125 presidents? A still ~ 1 that is pretty unexpected!

Conclusion:

1. Study! Guessing is not going to get you very far on any matching test. 2. Learn APL, so you can easily figure out what risks are in many things. Above example is from Digital Dice:Computational Solutions to Practical Probabability Problems by Paul J. Nahin 2008. The book uses MATLAB a fancy math/statistics program to show code for this example. Here is equivalent 13 lines of MATLAB to 1 line of APL: \{+/ $\omega \div \rho \omega\}\{+/(\omega ? \omega)=\omega ? \omega\}{ }^{\bullet} 1000000 \rho 24$

By Jerry Brennan

Get data click \rightarrow http://jmb.aplcloud.com/jbgames/Data/DJIACleaned.txt Then save this file as maybe \rightarrow DJIACleaned.txt somewhere on your computer Top line of file has DATE VALUE the rest have the data. import needs this. D-import '' 9 from APL choose your downloaded file DJIACleaned.txt

A Inspect the data(2004 to 2014) we read from file into namespace D: D. DNL 2 A shows all variables in namespace D
DATE
VALUE
pD. DATE
A show \# of dates (ρ)
2609
ค 2609 dates (from 2004 to 2014)
pD.VALUE
2609
A and 2609 stock values each of 2609 dates
$5 \uparrow^{\circ}$ D.DATE D.VALUE $\quad \rho$ show $1^{\text {st }} 5$ dates and then stock values
200412202004122120041222200412232004122410661.610759 .4310815 .89 10827.12 0
$\uparrow 5 \uparrow^{\circ} \mathrm{D}$. DATE D.VALUE \quad ค \uparrow change nested vector to matrix to see better $2004122020041221 \quad 20041222 \quad 20041223 \quad 20041224$
$10661.6 \quad 10759.43 \quad 10815.89 \quad 10827.12 \quad 0$


```
A Analyze the data 2004-2014
    (cD.VALUE=L/D.VALUE)/``D.DATE D.VALUE
20090309 6547.05 A lowest stock market day was March 9, 2009
    (cD.VALUE=「/D.VALUE)/``D.DATE D.VALUE
20141205 17958.79 & highest stock market day was Dec 5, 2014
\rho lets get some day to day differences in stocks now
D.DIF\leftarrow-2-/D.VALUE & (-2-/) takes day to day differences & changes sign
5\uparrowD.VALUE A Show first 5 days of Dows
10661.6 10759.43 10815.89 10827.12 10776.13
4^D.DIF & Show first 4 Dow differences(3 ups & 1 down)
97.83 56.46 11.23 -50.99
+/D.DIF>150 A how often Dow up > }150\mathrm{ points in one day
209
\rho 209 days
+/O<(-1\phiD.DIF>150)/D.DIF a how many times did it rise again the next day
100 A 100 days (from total of 209 rise days)
avg (-1\phiD.DIF>150)/D.DIF A average amount of change day after 150 pt rises
-15.26492823 & -1\phi rotates data by 1 so selects day after rise
+/D.DIF>0 A how many times did Dow go up at all in one day
1355
\rho 1355 days(remember total days was 2609)
avg D.DIF>0
\rho average # days it rose at all
0.5383392928
\rho 1355/2518 equals about 54% (little more than 1/2)
```

avg D.DIF
2.827393723
(cO,D.DIF $=\square-L / D . D I F) / `{ }^{\circ} D . D A T E$ D.VALUE
-777.68
2008092910365.45
(cO,D.DIF $=\square+\Gamma / D . D I F) / `{ }^{\circ} D . D A T E$ D.VALUE
936.42
200810139387.61

A Average daily stock change.
ค It rises avgerage <3 a day.
ค when was the biggest fall
ค 777.68 points lost
ค 09/29/2008 fell to 10365.45
A when was the biggest rise
A 936.42 points up
A on 10/13/2008 up to 9387.61

A But what if market drops 600+ pts? What should you do the next day? avg ($-1 \phi \mathrm{D} . \mathrm{DIF}<-600$)/D.DIF ρ average rise next day after down day 291.696 a so if market down buy next day if up sell next day. Try -400 or?

A Your turn. Noodle around, learn APL and stock market! Happy Investing!

More Stock Market Calculations***

In this section we will play with the stock market some more to see which years, months, weeks and days might be best for stocks. First we need to break D.DATE up into D.YR D.MONTH D.DAY and D.WKDAY. This is done below by enclosing(c) \# D.DATE which when formated(क) is an 8 long character string for each date. The first \# 20041220 is broken into 3 chars using the 1 's in the string 10001010 for YR MONTH DAY like this 200412 20. YMD is a vector of 2518 pieces. The 1 st contains 20041220 , the 2 nd 20041221 etc.
(for example Φ "1 $0001010 c \Phi 20041220$ would produce 3 \#'s 20041220 The execute($\left.\boldsymbol{q}^{(}\right)$each (") converts the char strings(from Φ back to numbers))
 D.WKDAY $-7 \mid-38339$-days "YMD $\rho 7$ days in week. 20041220 is a Monday=1 A note: 38339=day before 2004 12 20. days returns days since 1899-12-31

Now lets see which weekdays, months, years, and weeks of month were best.
$2 \Phi\left\{\operatorname{avg}\left(\omega=1 \downarrow\right.\right.$. WKDAY)/D.DIF\} ${ }^{*} 25$ ค avg close each week day to 2 decimals -0.64 9.83 1.15 2.30 1.16 ค lowest close=Mon \& highest=Tues
$2 \Phi\left\{\operatorname{avg}\left(\omega=1 \downarrow\right.\right.$. MONTH)/D.DIF\} ${ }^{\circ} \imath 12$ ค so Best months 3 \& 4 , worst 1 \& 6 -5.59 2. 39 9.30 13.53-3.44-8.87 8.69-1.72 5.54 2.62 4.76 6.92
$2 \Phi\{\operatorname{avg}(\omega=1 \downarrow D . Y R) / D . D I F\}^{*} \quad 2003+211$ ค Best years 2004, 2013 worst 2008 15.18 - 0.266 .953 .19 -17.74 6.554 .562 .543 .5513 .784 .92

In the next example month is divided into 4 approximately equal segments of about 8 days(last segment will be <8 depending on days in month).

1.722 .801 .106 .43 ค result last week in month stocks go up much more

The Power of $11^{* * *}$

11 is an important number. It is used as a verification check for many things such as 10 digit book bar codes, overcoming skips or scratches on CDs and in all sorts of internet communications where static etc causes losses. By using 11 lost parts of information can be identified so all the data does not have to retransmitted.
Look at http://www. numberphile.com/ \& click on 11-11-11 Eleven link.
In the book industry when 10 digit bar codes are used the 10 digits are always selected in a way so the check number is evenly divisible by 11.
This is explained on the video link above. Here is an example:
Here is a barcode: 0312152272 from book Tongue-Fu by Sam Horn. Each of these numbers is multiplied by a number from 10 to 1.

0	3	1	2	1	5	2	2	7	2	bar code
10	9	8	7	6	5	4	3	2	1	numbers from 10 to 1

02781462586142 resulting multiplication
The sum of (02781462586142) is 110 which is divisible by $11:$ $(110 \div 11=10)$. All 10 digit barcodes on backs of books when multiplied like this and added up are divisible by 11. This is called the checksum.
Here's how to do this in APL. First enter the program like this:
barcode11 $-\{0=11 \mid+/ \omega \times \phi \imath 10\}$
and test it like this:
barcode11 0 312152272 A good bar code
1
A 1 means good, 0 would be bad
computer returns 1 for yes if it is divisible by 11. A bad barcode will result in a 0.
barcode11 7312152272
0

A bad barcode
A 0 means bad, 1 would be good

Here is how it works from right to left: The program $\left\{0=11 \mid+/ \omega \times \phi _10\right\}$ generates the numbers $1-10(\imath 10)$, reverses them (ϕ) and multiples the reversed numbers(10-1) by w (which is the barcode read into the program) then sums the resulting numbers up(+/) and finds the residue or remainder(|) of division by 11. If the residue equals(=) 0 that means the sum is evenly divisible by zero with nothing left over(no residue) and the program returns a 1 (if true that $0=$ the residue) or 0 (if $0 \neq$ the residue)
Here is an example using residue(I):

$$
13 \mid 262830 \quad \text { A remainder(|) of } 13 \text { divided into each \# } 262830
$$

024 A 13 into 26 has no remainder. 13 into 28 residue is 2 and 30 is 4
Now I was curious how good this barcode check was so I tested it by taking a valid(divisible by 11) bar code and randomly changing 1 number and checking the new number to see if would indeed fail the divide by 11 check.
I wanted to check it in a lot of ways to be certain this barcode method would catch all slight changes, so I wrote a program to randomly change one number in a 10 digit bar code. Here is my program:

$$
\text { change } 1+\{c[i]+((-1+z 10) \sim((i+? 10)>c+w))[? 9] \diamond c\}
$$

Here's how it works. 1 st there are 2 commands, diamond(\diamond) separates them. $c[i] \leftarrow((-1+i 10) \sim((i \leftarrow ? 10) \supset c \leftarrow \omega))[? 9]$ This part determines a random number to insert into random $i^{\text {th }}$ position $(c[i] \leftarrow)$ of my changed string c. First the changed string is created by copying the old string (c $\leftarrow \omega$). Next, a random position to change(i) between $1-10$ is made by (i+?10). The code: ($-1+210$) gets the numbers $1-10$ and adds a negative $1\left({ }^{-1}\right)$ to each resulting in the numbers $0-9$. The $\sim((i \leftarrow ? 10)>c)$ part finds the value currently in position \mathbf{i} of c and eliminates(~) it from the numbers $0-9$ found by: $(-1+210)$ so I am left with only the 9 new possible numbers to insert in $c[i]$. The [?9] part selects one of these 9 new numbers which is placed in (c[i]↔).
c by itself after the diamond $(\stackrel{)}{ }$ simply tells the program to return the entire changed barcode(c) back to be displayed when the program is called:

Now I can check these to see if they fail the divide by 11 check.

```
barcode11 0 3 1 2 6 5 2 2 7 2
O
```

The zero means it failed the check. Indeed all these 1 digit changes fail the check. This is promising but I need to do much more checking to be sure so I need to simplify things some more to get more efficient.
First I can put the two programs together to check more quickly like this:

barcode11 change1 X

0
change1 changes 1 random \# of barcode in X \& then barcode11 checks that \# If I wanted to see the change \& check it too I could do this.

This shows the changed code and that it failed the check.
However, this is still not a very extensive check, so I did the following which does 100,000 random changes on the string (X) and adds up how many pass the check. The result was zero, meaning none of the changes pass the check, so I feel pretty confident that the 11 barcode check method is a good one. Here is the program that does the 100,000 check.

+/barcode11"change1" | 100000pcX |
| ---: |
| A none of the 100,000 new strings passes check |

Here is how this works. First I made up $100,000 \mathrm{X}$ strings with the same valid barcode. The enclose (c) symbol takes the 10 digit string(X) and puts in a packet and then 100000 makes 100000 of these packets. The each operator (*) tells the programs to operate on each of the 100,000 X string packets. The change1 program grabs each(") of these same good string packets and makes one random change in each and passes it to the barcodell program which checks each(*) of the 100,000 new string packets and returns a string of 100,0000 's and 1 's indicating if each changed string passed the divide by 11 check. Finally the string of 100,0000 's and 1 's is added up (+/) and the result is zero which is displayed and tells us none of the 100,000 random changes was valid.

Mortgage Calculations ****

Sample: from Wikipedia http://en.wikipedia.org/wiki/Amortization schedule
Problem:You want to buy a $\$ 100,000$ apartment in Waikiki. Should you get a loan for 7% for 20 years or 4% for 30 years? Two things are relevant here. 1) Which loan has lower monthly payment? 2)What is total cost of each loan?

P=Principle i=monthly interest . 07 $\div 12$ months $n=\# p a y m e n t s: 20 y r s \times 12 m o n t h s$
$\mathrm{P} \leftarrow 100000$ - i7 i $4 \leftarrow .07 .04 \div 12 \diamond$ n20 n30↔20 30×12 a assign values MonthlyPaymentAnuityFormula $\leftarrow\{P \quad i \quad n \leftarrow \omega \diamond P \times i+i \div((1+i) * n)-1\}$ a define PresValOfAnuity $\leftarrow A$ i $n \leftarrow \omega \diamond(A \div i) \times 1-1 \div(1+i) * n\}$ ρ define

Explore: Monthly payment for each loan(MP720 and MP430). +MP720 MP430-MonthlyPaymentAnuityFormula" (P i7n20)(P i4 n30)

775.2989356 477.4152955 a So monthly is much less for $4 \% 30$ year loan.

Explore: How loan and interest payments change over time in these loans
PresValOfAnuity" (MP720 i7 (n20-7×12))(MP430 i4 (n30-7×12))
79267.91062 86059.4709 ค MP430 owes more after 7 years of payments

Pxi7 i4	ค Initial interest paid(Principlexinterest rate)
583.3333333	333.3333333
ค Starting interest payment higher for 7% rate	

MP720 MP430-Pxi7 i4 A Initial pay to Prin (monthly paym-interest paid) 191.9656023 144.0819621 a So initially 7% loan is paying off quicker
($\mathrm{P}-191.97$ 144.08) $\times \mathrm{i} 7 \mathrm{i} 4 \mathrm{a} 2^{\text {nd }}$ interest payment (on prin-prev prin pay) 582.2135083332 .8530667 ค each pay less as part of loan is paid each month

MP720 MP430-582.21 332.85 \quad a $2^{\text {nd }}$ payment to Principle

193.0889356 144.5652955 ค < interest paid so more to principle
create fns:)ed amort, press enter, type lines below in edit window, when done press ESC \& fns created \& you back in session ready to try the fns.
amort $\leftarrow\{P$ i $n \leftarrow \omega$ ρ monthly payment table= Principle, Interest \& Balance
$m p \leftarrow\{P i n \leftarrow \omega \diamond P \times i+i \div((1+i) * n)-1\} P i n \quad$ $n \quad$ fns mp=monthly payment

 lblゃ'Period' 'PrinPay' ' IntPay' Balance' A make column labels

 \}
Answer: call amort \& get result. Last row is answer for cost of 7% loan.

Now try: amort P i4 n30. Is 4\% cheaper than above \$86,071.74 for the 7\% loan? Please note that though it is stated to be a 7% loan it is 7% every year \& becomes 86% in 30 years. Borrowing is expensive. Become a Banker!

Roots of a Polynomial ****

Given an equation such as $y=2 x^{2}+1 x-10$. what are it's roots(the x values that cause y to be equal to 0). Here is an APL program to find them:
quadsim $\leftarrow\{a b c \leftarrow \omega \diamond d \leftarrow(b * 2)-4 \times a \times c \diamond(+/ x),-/ x \leftarrow((-b), d * .5) \div 2 \times a\}$

```
    quadsim 2 1-10
    A try program equation: y=2x
2-2.5
A so if x=2 or -2.5 the equation for }y=
```

to check the result: substitute 2 and ${ }^{-2} 2$ into the equation
$x+2-2.5$
A store roots in x
($2 \times x * 2$) $+x+-10$
A test the equation with values of x.
00
A 00 result so $2 \&-2.5$ are roots of eq.

The above check is clear but there is an even easier way in APL.
APL has a special symbol to insert values into equations of this general type. It will also work for higher order equations like $3 x^{5}+2 x^{3}+x^{2}+5$. For this equation if $x \leftarrow 九 6$ then ($x \perp$ " $c 30215$) would result in the numbers 1-6 being inserted in the equation $3 x^{5}+2 x^{3}+x^{2}+5$ resulting in: 11632698091935 3971. This makes it very easy to make y values from the x values or to test to be sure the roots found are correct (result=0).

But not all equations have 2 roots, some equations have only one root and others have only imaginary roots. Here are two APL program to calculate any of these possible cases the first labels the result the second just returns the roots which can then be passed on to other APL programs. How many roots there are can be determined by the sign (x) of the calculation of disc. If sign of disc=1(positive) there are two real roots, if sign of disc=0(zero) there is one real root and if sign of disc=-1 there are two imaginary roots. Here is the complete program with labeled output for the 3 cases:

```
QUAD<{n roots of equation e.g. QUAD 2 1-10 for: 2xx*2 +1\timesx -10
    a b c*\omega \diamond d+(b*2)-4\timesa\timesc
    d>0:'2 Real Roots:',(-b+1 -1 xd*0.5)\div2\timesa
    d=0:'1 Real Root',-b\div2\timesa
    d<0:'2 Complex Roots',(u,'+',v,'I'),' and',((u\leftarrow-b\div2\timesa),'-',(v\leftarrow((-
d)*0.5)\div2\timesa),'I')
    }
```

To create this fns type)ed QUAD press enter \& type lines into editor. Lets test it out with the same example then with 2 other equations:
QUAD 21 -10 ค ค $2 x^{2}+x-10$

2 Real Roots: -2.5 2
QUAD 3-2 10 ค $3 x^{2}-2 x+10$
2 Complex Roots $0.333333+1.795054 \mathrm{I}$ and 0.333333 - 1.795054 I QUAD $9124 \quad$ A $9 x^{2}+12 x+4$
1 Real Root ${ }^{-0} 0.6666666667$
Here is a modified version of quadsim that returns only real roots unlabeled. This will be more useful to pass to plotting programs:

quad $-\{$

$a b c \leftarrow \omega \diamond d+(b * 2)-4 \times a \times c$
A input ω to $a b c \diamond$ find disc d
$d>0(-b+1-1 \times d * 0.5) \div 2 \times a$
a if disc>0 show 2 roots
$d=0:-b \div 2 \times a$
ค if disc=0 show 1 root
$d<0: \theta$
ρ if disc<0 show nothing (θ)

Lets try same 3 equations at once. Note: display is APL fns to display results so you can see their structure. display is used for display only, not when passing results to other programs.

$\left[\begin{array}{ll|l|l|l}-2.5 & 2 & 0 & -0.6666666667\end{array} \quad \begin{array}{l}\text { A } 2 \text { roots, no roots, } 1 \text { root }\end{array}\right.$
Now lets plot equation $2 x^{2}+x-10$ so we can see its shape and where the roots are. First we need to generate some x plotting values around the roots of -2.5 and 2 so we can see these critical points clearly in the upcoming plot. The program xaroundroots below does that. It takes the two roots as input on the right and the number of x values to make on the left. It then finds the difference(dif) between the two roots and generates $\alpha(50) x$ values from the lower root(d) minus the difference to the upper root(u) plus the difference so in this case the difference between roots -2.5 and 2 is 4.5 so 4.5 is subtracted from ${ }^{-2} 2.5$ giving ${ }^{-7}$ which is the first x value as can be seen below. Then it takes the upper root which is 2 and adds 4.5 to that giving 6.5 which is the highest of the $10(\alpha) x$ values. If only 1 root it makes a guess at what would be a reasonable range.

```
xaroundroots }\leftarrow{\alpha\leftarrow50 & find \alpha # of values around root
    u d dif }\leftarrow{\mp@code{\rho nested dfns to upper lower and diff
        2=\rho,\omega:u,d,((u-\Gamma/\omega)-d+L/\omega) \rho dif if 2 roots
        1=\rho,\omega:u,d,((u*\omega+5\|\omega\div2)-d+\omega-5\|\omega\div2) \rho dif if 1 root
    }\omega \rho if 1 root near 0 sets to range of about 30
    du*(d,u)+(-dif),dif
    (1\supsetdu)+(-1+\imath\alpha)\times(-/\phidu)\div\alpha-1
} \rho make \alpha x values in range(1כdu to 2כdu)
```

To create this fns type:)ed xaroundroots then enter \& type above lines
$2 \Phi X+10$ xaroundroots \square quad 2 1-10 9 show roots \& make 10 X values -2.52
$-7.00-5.50-4.00-2.50-1.00 \quad 0.502 .00 \quad 3.505 .00 \quad 6.50$
$2 \Phi Y \leftarrow(2 \times X * 2)+X+-10$ ค put above X values into equation to get Y 's $81.0045 .0018 .000 .00-9.00-9.000 .0018 .0045 .0081 .00$
2Φ DATA $4,[.5] X$ p put the X and Y values into a matrix for plotting. $81.0045 .0018 .00 \quad 0.00-9.00-9.00 \quad 0.00 \quad 18.0045 .0081 .00$ $-7.00-5.50-4.00-2.50-1.00 \quad 0.502 .00 \quad 3.50 \quad 5.00 \quad 6.50$ plotxy X Y \quad A Now Plot the 10 points

So now lets put this together in a little program so we can do it easily: rootsandplot $\leftarrow\{\alpha \leftarrow 100 \diamond$ ch.Set'Footer' $\square \leftarrow f t \leftarrow q u a d \omega$ $x \leftarrow \alpha$ xaroundroots ft $\diamond y \leftarrow x \perp$ "c ω 。 plotxy x y

Notes: this program really has 4 lines separated by diamonds (\diamond)

1. $\alpha \leftarrow 100$ sets default to make $100 \mathrm{x} \& \mathrm{y}$ values. If you don't specify a number on the left when you call the program you will get $100 \times \&$ y values. 2. $\quad \square$ displays roots computed by quad program using input equation (ω) and then passes the roots to xaroundroots which finds 100 x values near the roots so we will have a good plot around the roots.
2. $y \leftarrow x \perp$ " $\subset \omega$ puts the found x values into the equation(i.e. $\omega=21-10$). As mentioned above this tricky code is APL equivalent to $y \leftarrow(2 \times x * 2)+x+{ }^{-} 10$ 4. finally plotxy passes x and y to little plot program I wrote to make a pretty display. Here it is:
```
\(R \leftarrow\{a x 0\} p l o t x y\) data
    ค plot data:x=col1 \(y=c o l 2\) or \(x=v e c t o r 1 ~ y=v e c t o r 2\)
    \(a x 0 \div 0=\square N C^{\prime} a x O^{\prime} \rho\) if no axO axes cross at 0
    :If 2=ミdata \(\diamond\) data \(-\phi \uparrow d a t a\) • :End
    ch.Set'Lines' 1245
    ch.Set"(ax0,ax0,1)/('Xint' 0)('Yint' 0)('XYPLOT,GRID')
    ch.Plot data \(\diamond\) PG*ch.Close
    R↔'View PG \(\rho\) to see it'
```

To create this fns type led plotxy press enter and type lines into editor. And enter line)copy rainpro to bring in the fancy APL graphics.
Now lets the try program rootsandplot for the equation: $2 x^{2}+x-10$

Notice where the roots $(y=0)-2.5$ and 2 are on the plot.
This program will plot data for any polynomial with 2 real roots simply by entering the parameters for $x^{2} x^{1}$ and x^{0}.
Now lets try: $y=15 x^{2}+8 x+0$ and request only 50 values to plot.

Again notice where roots are and see that xaroundroots centers plot nicely

Quadric Equations and Functions

Quadric equations are of the general form $y=a x * 2+b x+c$. The above program only works when there are two roots and it does not tell us either vertices or minimums of the function. So here is a more complete program. Lets plot such an equation in APL. Lets try $y=3 x * 2+-6+2$. Here is a way to plot such an equation in APL by entering just a b and c into the program.

QuadPlot 3 -6 2

View PG ρ to see it

The program footnote tells us that the function has a minimum at $x=1 \quad y=-1$ and that it crosses the x axis twice, once at . 423 and again at 1.577 . Here is the QuadPlot program:
To create this fns type)ed QuadPlot press enter \& type lines into editor.

```
QuadPlot(a b c);x;y;xint;xvert;yvert;mm;rng;ft
    A Plot quadratic eq: QuadPlot 2 -1 -7 for: 2x*2 -x -7 (a=2 b=-1 c=-7)
    mm\leftarrow((1+a<0)כ'F min' 'F max'),' at x y=' \rho "max" if a<0 otherwise "min"
    xvert\leftarrow-b\div2\timesa
    yvert<xvert\perp"ca b c A solve eq for yvert using xvert
    xint\leftarrow,quad a b c { quad formula for x intercepts
    rng\leftarrow&(1+\rhoxint)>'O,xvert' 'O,xint' 'xint' \rho find range of x values to plot
    :If rng\equiv0 0 \diamond rng*-10 10\diamond :End & fix range if at 0 0
    x+xaroundroots rng
    y+x\perp"ca b c
    a find good x values to plot
    A solve eq for y using x values
    ft*'y=ax*2+bx+c a=' 'b=' 'c='mm'xintcepts=',"a b c(3\Phixvert
yvert),c3\Phixint
    ch.Set'Footer' ft
    plotxy x y
```


Integration: Find Area Below Any Equation in 1 Line APL ***

Define the fns:
SIMPSON $\leftarrow\{b$ e $n \leftarrow \alpha \diamond X+b+(d \leftarrow(e-b) \div n) \times 0, \imath n \diamond d x+/((1 \phi 11,(n-1) \rho 42) \times \pm \omega) \div 3\}$
Call fns: $0=$ begin interval $1=e n d$ interval $6=\#$ rectangles $X * 2$ is equation to integrate(ω).
0166 SIMPSON ${ }^{\prime} X * 2$ '
0.3333333333
Here are the 2 actual fns with extensive comments in green. Actual code is only the white. You can use SIMPSON and tell fns how many rectangles you want or ADSIM if you want to set accuracy of result \& the fns will figure out how many rectangles are needed for the desired level of accuracy.
A Integration of equations: find area under equation
A for a range of values. Comments are in green.
a You can use SIMPSON if you want to use certain \# rectangles
A or ADSIM if you want a certain accurracy
A so a simple SIMPSON like this would work in 1 lines.

SIMPSON+\{a simpsons rule(integrate) $w: f n \alpha: b=b e g i n$ e=end $n=\#$ intervals A 016 SIMPSON ${ }^{\prime} X * 2^{\prime}$ integrated ANS $=.333333$
A APL PROGRAMS for Mathematics Classroom by Norman Thompson 1989 p89
$b e n+\alpha \diamond X+b+(d+(e-b) \div n) \times 0$, in $\Delta d x+/((1 \phi 11,(n-1) \rho+2) \times \phi \omega) \div 3\}$
A The ADSIM fns recursively calls itself (∇) til has requested precision

ADSIM+\{A adaptive simpsons(integrate) ω :fns α : b=begin e=end $p=p r e c i s i o n$ A 01.000001 ADSIM $^{\prime} X * 5{ }^{\prime}$ integrated $A N S=.16667$
b e $p+\alpha \diamond Z+(b, e, 4)$ SIMPSON ω
$p\rangle \mid Z-(b, e, 2)$ SIMPSON $w: Z$
$Z+((e-(T+0.5 \times e-b), 0), 0.5 \times p) \nabla \omega$
$Z+((b+0, T), 0.5 \div p) \nabla \omega\}$

Below is online version in action．Go to jmb．aplcloud．com \＆choose Introlive button．To Practice using live APL paste line below to Input： 3.165555 SIMPSON＇ $\mid(.3 \times X * 3) \times 10 X^{\prime}$ ค $.3 \times X * 3 \times \operatorname{SinX}$ from $3.1-65555$ rects MiServer：click orange see APL

Anyone who can write APL should be able to host it on the web．${ }^{\text {TM }}$

Learn／Practice APL Here．
Click Primer button to easily learn \＆
generate APL symbols．Primer
APL tutorial 101 Video or try your APL Code or examples in following downloadable files．
click to download APL Lessons \＆Examples：Jerry Brennan 60 pages（pdf rev 2／11／2016）
Easy chapters marked with one＊．Copy and Paste Examples from PDF to Input：below and press Calc to do all 38 short Lessons．
Click to download Stock Data（Chapt $6^{* * * *}$ ）example to your computer．Then right click on data \＆choose Save as and pick a place in your computer．）．
Then to import this file into APL：click Choose File below，select file you just saved，then Choose Import to Namespace D．
Enter \＃＇s \＆get APL symbols from Primer to Input：below to solve：e．g．enter／drag／click：birthdays ame＂50 66 and click Calc button to determine the odds of 2 people having same birthday for each（＇） $50 \& 66$ people at a party．（Chapter 1^{*} example）To see Chapt 1 program
 not type－for neg \＃＇s．
If you want to input data Choose File with data and then choose Import to Namespace D
Choose File No file chosen Import to Namespace D

Input： 3.165555555 SIMPSON＇ $\mid(.3 \times X * 3) \times 10 X^{\prime}$ A $.3 \times X * 3 \times \operatorname{Sin} X$ from $3.1-65555555$ rects
Result：Calc Clear Input Clear Output TryAPL Set Rows Visible for Scrollable Results Window＝ 25 V
WS FULL
SIMPSON［3］b e $n \leftarrow \alpha \circ X \leftarrow b+(d \leftarrow-(e-b) \div n) \times 0$, in $\circ d \times+/((1 \Phi 11,(n-1) p 42) \times \phi \omega) \div 3$
\wedge
3.16555555 SIMPSON $^{\prime}\left(\left(.3 \times X^{*} 3\right) \times 10 X^{\prime}\right.$ © $.3 \times X^{*} 3 \times \operatorname{Sin} X$ from $3.1-6555555$ rects
64.05412828
3.1655555 SIMPSON $^{\prime} \mid\left(.3 \times X^{\star} 3\right) \times 10 X^{\prime}$ © $.3 \times X^{\star} 3 \times \operatorname{Sin} X$ from 3．1－6 55555 rects
64.05384471
3.165555 SIMPSON $^{\prime} \mid\left(.3 \times X^{*} 3\right) \times 10 X^{\prime}$（0） $3 \times X^{*} 3 \times \operatorname{Sin} X$ from 3．1－6 5555 rects
64.05100687
3.16555 SIMPSON $^{\prime}\left(\left(.3 \times X^{*} 3\right) \times 10 X^{\prime}\right.$ 〇 $.3 \times X^{*} 3 \times \operatorname{Sin} X$ from 3．1－6 555 rects
64.02238803
3.1655 SIMPSON $^{\prime}\left(\left(.3 \times X^{*} 3\right) \times 10 X^{\prime}\right.$ 〇 $.3 \times X^{*} 3 \times \operatorname{Sin} X$ from 3．1－6 55 rects
63.70869054
3.165 SIMPSON $^{\prime}\left(\left(.3 \times X^{*} 3\right) \times 10 X^{\prime}\right.$ 〇 $0.3 \times X^{*} 3 \times \operatorname{Sin} X$ from $3.1-65$ rects
57.6922467

3．16．0000001 ADSIM＇ $\mid\left(.3 \times X^{*} 3\right) \times 10 X^{\prime}$ 0． $3 \times X^{*} 3 \times \operatorname{Sin} X$ from $3.1-67$ decimals
64.05415978

As you can see the correct answer to 7 decimal places is 64.05415978 as found by ADSIM．It requires a lot of very small rectangles added together to be that accurate．SIMPSON takes more than 555555 such rectangles to be accurate to only 4 decimal places and it overfills the workspace if I try for more．The much more efficient ADSIM however can easily find the answer to 7 decimal places．
By Jerry Brennan

To see a plot of the area cut/paste line below to Input: field on web page and press Calc below it.

```
3.1 6 .000001 PlotAreaUnderCurve '|(. 3*X*3)*10X'
```


$l\left(.3 \times X^{*} 3\right) \times 1 \circ X$ for X range:3.1 6 area $=64.05415978$
Here is the program PlotAreaUnderCurve that calls ADSIM \& plots the curve:

[0]	RestL PlotAreaUnderCurve R;b;e;p;n;X;z;ft
[1]	$A \quad c a l c$ and plot area under curve $L=b e g i n$ end precision $R=e q u a t i o n$
[2]	A i.e: 01.000001 PlotAreaUnderCurve ' $\mathrm{X} * 5$ ' integrated $\mathrm{ANS}=.16667$
[3]	$Z+L$ ADSIM R A calc area under equation line from
[4]	be p $n+L, 100$
[5]	$\mathrm{X}+\mathrm{b}+((\mathrm{e}-\mathrm{b}) \div \mathrm{n}) \times 0$, $\mathrm{\imath n}$
[6]	z+RainProIn
[7]	ch. Set'Footer'(ft+R,' for X range:', ($\Phi \mathrm{b}, \mathrm{e}$), ' area=', $\Phi \mathrm{Z})$
[8]	Res $+\uparrow(\mathrm{ft})(1 \mathrm{plotxy} \mathrm{X}(\underline{\text { R }}$))

The above problem is interactively discussed in excellent detail at http://www.intmath.com/blog/mathematics/riemann-sums-4715.
Email me at jbrennan@hawaii.rr.com if you want to learn more. OR

1) go to jmb.aplcloud.com
2) press IntroLive button
3)choose menu choice called:

Practice using live APL
All APL Examples from PDF available here to try
Basic Statistics

Mean $+\{(+/ \omega) \div(\rho \omega)\}$	ค sum $(+/)$ of \#'s divided by \#(ρ) of \#'s
Max $+\{\Gamma / \omega\}$	ค maximum of numbers($\Gamma / /)$

By Jerry Brennan

The median is defined as the middle number if there are an odd \# of \#'s. If there are an even \# of numbers its the average of the two middle numbers. The above median fns first sorts the data into s and finds the midpoint which is either a whole number position for odd \# of \#'s or a position $1 / 2$ way between the two middle positions(mid) if there are an even number of numbers. After the diamond(\diamond) the fns averages the 1 or two middle numbers $s[($ (mid) (Lmid)]. Lets try a couple to see how it works.

The Freq function: u is sorted unique(u)values of the 50 rand \#'s(NUM)

FreqBar Freq ?50p6 9 make 50 rand \#'s 1-6, turn into freqs, plot

 Frequency Bars

Mode $+\{\uparrow(c(f>1 \phi f) \wedge(f>-1 \phi f)) / " v f+0, \cdots(\downarrow F r e q \omega), \cdots 0\}$ ค Mode uses Freq Mode NUM ρ call mode program with same num used above for freq. 26 a two modes one at 2 one at 6 118 A mode at 2 has a frequency of 11. mode at 6 has frequency of 8 .

Modes are defined as any frequencies that are higher than frequencies immediately before or after it or are at either end and are higher than the one frequency that is either before it or after it. The program finds the frequencies. in this case for values 1-6:9 10 77116 and puts 0 's before and after the frequencies then compares by rotating(ϕ) for values before and(^) after and if it greater than both it is a mode as can be seen here:

Kendall's Tau : Rank Order Correlation

Here is some code for first example and then another example I found online. I also computed z score for it.
First your data in a1 and 22 , then call the Ktau program. If two raters rated 8 bands numbered 1-8. Ktau computes how similar the rank orders are by counting concordances and discordances.
First put the bands in order by the ranks of the first rater a1. So al goes 1-8. Rater a2 had a different ordering. The both agreed in band 1. but rater a2 saw a1's second best band as his $3^{\text {rd }}$ best and a2 saw the $6^{\text {th }}$ band as his second best. Now we determines concordances and discordances.

```
    a1+1 2 3 4 5 6 7 8
    a2+1 3 4 5 2 6 7 8
ค c=7 5 4 3 3 2 1 0 so c=25
A d=0 1 1 1 1 0 0 0 0 so d= 3
```

So looking at the a2 numbers band 1 had 7 concordances(7 numbers after it that were higher and 0 discordances(0 numbers after it that were lower). For a2 band 2 had 5 concordances(5 numbers after it that higher) and 1 discordance(1 number after it that lower). Continuing for the other bands and adding them all we get 25 concordances and 4 discordances. The Ktau formula uses c and d like this. Ktau=(c-d) $\div(c+d)$. The Ktau fns below does this using a sub fns call cd in [1] which calls itself(using $\boldsymbol{\nabla}$) repeatedly for each rank counting the numbers below that rank that are concordant or discordant Both c and d are calculated by fns cd in [2] by calling it with either < or > as the left argument. [3] calculated Ktau and counts samples size(n1). [4] calculates significance level(z).

```
    \nabla Ktau<{@ c=concordant d=discordant
[1]
    cd\leftarrow{1=\rho\omega:0 \diamond (+/(1\uparrow\omega)\alpha\alpha 1\downarrow\omega)+\nabla 1\downarrow\omega}
    c d < <ccd \omega)(>cd \omega)
    tau\leftarrow(c-d)\div(c+d)}\diamondn1+x/-2\uparrow\imath\rho
    tau,z*(3\timestau\timesn1*0.5)\div(2\times5+2\times\rho\omega)*0.5}
    a1 Ktau a2 & so Ktau=(25-3)\div(25+3)=.7857
0.7857142857 2.721794126 A so Ktau=0.7857 z=2.7218
```

A here is one more example

```
        b1\leftarrow 1 2 3 4 5 6 7 8 9 10 11 12
        b2\leftarrow2 1 4 3 6 5 8 7 10 9 12 11
    \rho c=10 10 8 8 6 6 4 4 4 2 2 0 so c=60
    \rho d= 1 0 1 0 1 0 1 0 1 0 1 so d= 6
        b1 Ktau b2 A thus Ktau=(60-6)\div(60+6)=.8182
```

0.8181818182 3.702917599 A so K tau $=0.8182 \mathrm{z}=3.7029$

Linear Regression：compute Best Fit line from raw data＊＊＊＊

sd corr LinReg LinRegPlot
（see page 332 of Algebra 1 book）see also ch．Set＇Order＇
Programs：sd：standard deviation corr：correlation Reglin：linear regression
$s d+\left\{\left((+/(\omega-\right.\right.$ Mean $\left.\left.\omega) * 2) \div^{-1} 1+\rho \omega\right) * 0.5\right\}$ ค define program for standard deviation corr $\leftarrow\{m a \operatorname{mw}-M e a n " \alpha \omega \diamond(+/(\alpha-m a) \times(\omega-m w)) \div((+/(\alpha-m a) * 2) * 0.5) \times((+/(\omega-$ $m w) * 2) * 0.5)\} \quad$ a define program for correlation


```
\(R \leftarrow x\) RegLinPlot \(y ; y l i n e ; f o o t ; a ; b\) A define linear regression plot
    ch.Set'Head' 'Linear Regression Plot'
    \(a b \leftarrow y\) 宣 \(\phi \uparrow 1,{ }^{\prime} x \quad\) a determine regression line formula
    \(y\) line \(\leftarrow(a \times x)+b \quad\) a get regression line points
    ch.Set'footer'(x RegLin y) \(\AA\) get eq,r \(r * 2\) for footer label
    ch.Set'XYPLOT,GRID' \(\quad\) a set up the plot
    ch.Plot申个x yline \(\quad \beta\) plot regression line
    \#.ch.SetMarkers'Bullet' \(\quad\) ch. \(\Delta\) markers shows other symbols
    ch.Scatter \(\phi \uparrow x\) y
    PG+ch.Close
    R*'View PG a to see it'
```

To create this fns type ）ed RegLinPlot press enter \＆type above lines into editor．

```
X+0 1 2 3 4 5
A X raw data
Y<27.9 28.7 30.2 32.5 33.1 34.3 & Y raw data
X RegLinPlot Y
    A do regression
```

View PG A to see it

Linear Regression Plot

$y=a x+b a=1.357142857 b=27.72380952 r=0.9881725632 r * 2=0.9764850146$
So the above equation is: $Y=1.36 X+27.7$ and correlation=.99
If you had only two points to plot this program would just find the perfect line equation between the two points and the correlation would be 1.0. The Domino (回) used in line [2] above is very powerful. It can be used to solve multiple regression problems where you are fitting multiple sets of data and nonlinear regression. It can also be used to solve sets of simultaneous equations.

Solve Set of Equations Easily with APL（Cons国Coefs）

Let me explain how Cons回Coefs in APL to solves simultaneous equations．
Here is a set of three linear equations with three unknowns $x y$ ，and z ，written using traditional mathematical notation：

$$
\begin{aligned}
-8 & =3 x+2 y-z \\
19 & =x-y+3 z \\
0 & =5 x+2 y
\end{aligned}
$$

This set of equations can be represented using a vector for the constants and a matrix for the coefficients of the three unknowns，as shown below：

To solve the above set of equations，we must find a vector of three values XYZ such that：
Cons is equal to Coefs＋，＊XYZ
We can find such a solution provided that the matrix coefs has an inverse，i．e．that it is non－ singular．
Let us multiply both sides of the equation by the inverse of Coefs：
$\begin{array}{lrl}\text { If } & \text { Coefs }+\ldots \times \mathrm{XYZ} & \text { is equal to } \\ \text { then（回Coefs）}+\ldots \text { Coefs }+\ldots \times Y Z & \text { is equal to } & \text {（圆Coefs）}+\ldots \times \text { Cons }\end{array}$
Knowing that（回Coefs）+ ．\times Coefs gives the identity matrix（let＇s call it I），the expression can be reduced further：

Since（回Coefs）$+\ldots \times$ Coefs $+\ldots$	$X Y Z$	is equal to	（回Coefs）$+\ldots \times$ Cons
then	$I+\ldots$	$X Y Z$	is equal to
	$X Y Z$	is equal to	（回Coefs）$+\ldots \times$ Cons
and consequently	（回Coefs）$+\ldots \times$ Cons		

Eureka！We found a way of calculating the values we had to find：
$2_{4}{ }_{4}^{\square+X Y Z+(\text { 国Coefs })+, \times \text { Cons }} \Leftrightarrow$ You can check．This is correct！

More generally：Solutions + （固 Coefficients）$+\ldots$ Constants
Note that in the formula above we multiply Constants by the inverse（or reciprocal）of a matrix．Multiplying by the reciprocal of something is usually known as division，so perhaps this is true here as well？Yes it is，and we＇ll show that in the next section．

The dyadic form of Domino implements matrix division，so it can do exactly what we have just done：It can easily solve sets of linear equations like the one shown above：

```
    Cons圆Coefs
2 -5 4
\(=\) Equivalent to (圆Coefs) + . Cons
\(=\) We found the same solution as before.
```

Naturally，this method works only if the coefficient matrix has an inverse．In other words，the set of equations must have a single solution．If there is no solution，a DOMAIN ERROR will be reported．
We can summarise this as follows：
Given a system of N linear equations with N unknowns，let the matrix of the coefficients of the unknowns be named Coefficients，and the vector of constants be named Constants，the system can be solved using matrix division like this：

Solutions－Constants 圆 Coefficients

This exact same method of solving equations is also used for Regression Analysis upon which much of statistics is based．The Constants are the dependent variable and the Coefficients are the independent variables used to predict dependent variable．The Solutions is the prediction equation． The 回 operator does it all in APL from simple regression to multiple and nonlinear regression．Lets try a simple example first．

The Horse \＆Mule Problem ${ }^{1}$（WORDS TO ALGEBRA TO APL）＊＊＊

Here＇s a problem to translate from words to algebra to APL．A horse \＆a mule，both heavily loaded，were going side by side．The horse complained of its heavy load．＂What are you complaining about？＂replied the mule．＂If I take 1 sack off your back，my load will become twice as heavy as yours．But if you remove 1 sack from my back，our loads will be the same．＂Now wise mathematician， 1 st show me algebra then solve with APL for \＃sacks for horse and mule？＂Use：H＝horse sacks and M＝mule sacks．

If I take one sack，（from horse＝H）	$H-1$
my load（mule＝M）	$M+1$
will be twice as heavy as yours．	1）
But if you take one sack from my back（M）	$M-1$
Your（H）load	$\mathrm{H}+1$
will be the same as mine．	2）

We have reduced the problem to a system of 2 equations in 2 unknowns：

1）	$M+1=2(H-1)$	Now rearrange 1）\＆2）for APL：	1） $3=2 \mathrm{H}+{ }^{-} \mathrm{M}$
2）	$\mathrm{M}-1=\mathrm{H}+1$	constants left \＆coefficients right	2） $2=-H+M$

Here＇s APL code from previous section：Solutions Constants 固 Coefficients
 $57 \quad$ ค Solution：H（horse）$=5$ sacks and $M($ mule $=7$ sacks．
So if mule took 1 sack from horse mule would have 8 \＆horse 4， and if mule gave 1 sack to horse they would both have 6 sacks．

[^0]
Linear Quad \＆Cubic Regression＊＊＊＊＊reg $<\{x y+\omega \diamond y$ 国。．＊ф0，$\alpha\}$

First some data for X and Y（used throughout the following examples）
$X \nleftarrow^{-} 2-1012 \otimes Y \leftarrow 0.250 .5124$
 $(\alpha \operatorname{corr} \omega) * 12)\}$ A define Linear Regression function（all one line）
X RegLin $Y \quad \Omega$ call Linear Regression function
$y \leftarrow(a \times x)+b \quad a \leftarrow 0.9 \quad b \leftarrow 1.55 \quad r=0.93 \quad r * 2=0.87$ a linear results

X RegQuad $Y \quad \cap$ call quadratic regression function
$y \leftarrow(a \times x * 2)+(b \times x)+c \quad a \leftarrow 0.29 \quad b \leftarrow 0.9 \quad c \leftarrow 0.98 \quad$ ค quadratic results
RegCube $\leftarrow\left\{\left(c^{\prime} y \leftarrow(a \times x * 3)+(b \times x * 2)+(c \times x)+d^{\prime}\right)\right.$ ，

X RegCube Y a call cubic regression function
$y \leftarrow(a \times x * 3)+(b \times x * 2)+(c \times x)+d \quad a \leftarrow 0.06 \quad b \leftarrow 0.29 \quad c \leftarrow 0.69 \quad d \leftarrow 0.98$
Notice the similarity in the above 3 functions．

Regression coefficients	Equation	APL Domino Operator
Linear：a b	$y \leftarrow(a \times x)+b$	
Quadradic only	$y \leftarrow(a \times x * 2)+b$	W固 0° ．＊2 0
Lin／Quadradic：a b c	$y \leftarrow(a \times x * 2)+(b \times x)+c$	$\omega ⿴ 囗 ⿱ 一 一 ⿱ 一 𫝀 口 10 . * 210$
Lin／Quad／Cubic a b c d	$y \leftarrow(a \times x * 3)+(b \times x * 2)+(c \times x)+d$	

But there is a simpler way in APL．Since the 3 programs are so similar it is possible to write one function that can do linear quadric and cubic and actually it can go beyond cubic if you wish．Here is the function：

If you wanted little better labeling of these equations pass them to this： RegEq function

\uparrow lab RegEq＂$(l a b \leftarrow(1)(12)(123)) r e g " \subset X Y$ No 2Φ so show all decimals （ $0.9 \times x * 1$ ）$+(1.55 \times x * 0)$

A linear
$(0.2857142857 \times X * 2)+(0.9 \times X * 1)+(0.9785714286 \times X * 0)$
ค lin／quad
$(0.0625 \times X * 3)+(0.2857142857 \times X * 2)+(0.6875 \times X * 1)+(0.9785714286 \times X * 0) \rho \quad$ in $/ q / c u b$

Any 1 these equations could be easily cut，pasted \＆compared in plotxy． plotxy $X(Y \leftarrow(0.2857142857 \times X * 2)+(0.9 \times X * 1)+(0.978571486 \times X * 0))$ h lin／quad plot View PG \boldsymbol{A} to see it

By Jerry Brennan

Actually any \# of these equations could easily be plotted on the same plot. An example of plotting more than one equation on the same plot follows with automatic labeling of the lines also. All you have to do is enter your x range and your equations on line below beginning with xandys.

Plotting 3 Exponential Functions to Compare ****

Here is some data for three exponential functions from page 521 of Algebra I by McDougal Littell which I show you how to easily plot all at once.

$X{ }_{-}^{-} 3+25$	y $1+2$ * X	y $2 \leftarrow 3 \times 2$ * X	y $3 \leftarrow^{-} 3 \times 2 \times X$
-2	0.25	0.75	
-1	0.5	1.5	-1.5
0	1	3	-3
1	2	6	6
2	4	12	-12

Here is how this data for X range of -2 to $2(X \leftarrow-3+25)$ and equations: y1 y2 $y 3$ are computed inserting the X values into each of the equations (${ }^{\text {" }}$ xandys). The text equations are put into the key for display in the plot which is called in the $3^{\text {rd }}$ line below(plotxy). This example plots 3 lines but any number of equations of any complexity to could be plotted. xandys ${ }^{\prime} X \leftarrow-3+25^{\prime} \quad$ ' $y 1 \leftarrow 2 * X^{\prime} \quad$ ' $y 2 \leftarrow 3 \times 2 * X^{\prime} \quad$ ' $y 3 \leftarrow-3 \times 2 * X^{\prime}$ ch.Set 'Key' ($1 \downarrow$, $/{ }^{\prime}, ', \cdots 1 \downarrow x$ andys)
plotxy ${ }^{\text {" }}$ xandys
View PG A to see it

Plotting in General in APL *

There is a very extensive plotting library which can do virtually any plot you want. In addition virtually everything can be customized. Fonts and colors can be changed, multiple axes are available, plots can be placed on top of each other, specific areas can be notated or colored etc. To see examples of all of the above and more simply click on each of the following commands. First load rainpro the press enter any of the lines below it.
)load rainpro ρ to load in the following graphics
Samples.Slideshow 3 ค Run through selected samples (with 3 s delay) ActiveCharts.Active ρ Simple illustration of drawing a chart on a form ActiveCharts.Drill a Sample drill-down application with Dyalog Gui ActiveCharts.Edit \quad A Sample data editor using draggable markers

Multiple Regression

In the previous examples there was one X variable, which predicted one Y variable. In the simultaneous equation examples there was one perfect solution. In the linear, quadratic and cubic models there was one X variable and we determined a best fit equation to predict Y . In multiple regression there will be a number of different X variables that are used together to find a prediction equation for Y . In multiple regression X is a matrix with different columns for different X variables all used to predict the Y variable. What different people will wear tomorrow depends upon many things such as their income, what they wore today, chance of rain, temperature, who they are trying to impress, how steep the mountain is etc. The calculation in APL is basically the same. Lets look at an example.

TABLE 4-1
Data Collected From Random Sample of 5 General Motors Salespeople
Independent Variable 1 Independent Variable 2 Dependent Variable

(X1)	(X2)	(Y)
Highest Year of School Completed	Motivation as Measured by Higgins Motivation Scale	Annual Sales in Dollars
12	32	$\$ 350,000$
14	35	$\$ 399,765$
15	45	$\$ 429,000$
16	50	$\$ 435,000$
18	65	$\$ 433,000$

Alien Attack *

The human flesh eating Martians are coming, but fortunately we have a very expensive ray gun, which can destroy their one giant saucer. Unfortunately the saucer is very elusive and the gun only destroys the saucer $1 / 3$ of the time. Fortunately a high paid consultant suggested that the solution is to build 3 ray guns because $1 / 3$ plus $1 / 3$ plus $1 / 3$ comes out to . 9999 so 99.99% of the time the saucer would be destroyed. Unfortunately this is not correct. So we need your help to save the human race. If not 3 how many ray guns would be needed to be 95% certain to save the human race?. What about 99% certain? I was a little bit nervous about this and being wrong might have some huge negative consequences for us humans so I resorted to the Monte Carlo technique. The trick is to translate this into APL code.

If 3 guns fired randomly using ? 333 APL returns 3 random numbers between $1 \& 3$. Using 1 for a hit \& $2 \& 3$ for misses gives us our $1 / 3$ for each gun. ? 333
212 a so the second gun destroyed the saucer but I noticed no 3 's
So this looks dangerous to me. So we need some more checking. I only want to find 1 's so I modified my code a little.
$1=\square \leftarrow$? 33 3 $3 \square$ assigns random \#'s to output and then $1=$ matches $312 \quad$ a these are the random gun shots show by \square^{+} $010 \quad$ a this shows that gun 2 was $=1$ and it destroyed the aliens

Now all I really care about is if 1 or more guns=1 and aliens are dead so I use v/ which, like +/ puts a plus between each number, v/ puts an or(v) between each number and result is 1 if gun 1 or gun 2 or gun $3=1$
otherwise v/ result is zero. So in examples below none of $3 \mathbf{3} 2=1$ so result is 0. But in 2nd example one or more of $121=1$ so result is 1 . $v / 1=\square \leftarrow 33$

```
3 3 2
O
    v/1=\square<?3 3 3
12 \rho two shots=1
1
A none of shots match 1
ค so saucer gets through and earth is lost
a two shots=1
A so saucer definitely destroyed
```

Now lets create a program and run it a few times and average the results.

The " 1000000 p makes up a million 3 's which are passed one at a time using(") to the program to run 1 million times. ω is the right argument to the unnamed function, The 3 is for 3 guns in this case so wp3 becomes $3 p 3$ which becomes 3 3 3 . ($\operatorname{avg}\{1 \epsilon \text { ? } \omega \rho 3\}^{*} ? 1000000 \rho 3$ uses membership (ϵ) works too)
Lets try 4 guns and our fns using membership(ϵ). Is 1 a member of ? $4 \rho 3$

$$
\operatorname{avg}\{1 \epsilon ? \omega \rho 3\}{ }^{\bullet 1} 1000000 \rho 4 \quad ค 4 \text { guns each hit saucer } 1 / 3 \text { of time. }
$$

0.802378 ค 4 guns better but I want 95% or better.

Please figure out \# guns needed to be 95% certain \& let me know. Thanks!

Alien Attack Two *****

Wonderful we destroyed the saucer, but unfortunately the Martians came up with a new strategy. They built a zillion(more or less) small saucers. Fortunately they put an id number each saucer from 1 to N and we can see some of saucers coming and can read the id numbers on some of those. Unfortunately the id numbers are not in any particular order, they are random and further they are in binary not the base 10 we are used to. Fortunately APL has a built in function to change numbers from any base to and from base 10 and I have an idea of a way to estimate N from a sample (n) of random numbers from N.
First lets review number bases. In base 10 we have 10 digits for the first 10 numbers then we repeat using the same 10 digits like this:
$0123456789 \quad 10111213141516171819 \quad 20212223$ etc In binary we only have two digits 0 and 1 so the repeating happens faster. $0=0 \quad 1=1 \quad 2=10 \quad 3=11 \quad 4=100 \quad 5=101 \quad 6=110 \quad 7=111 \quad 8=1000 \quad 9=1001 \quad 10=1010 \quad 11=1011$ In APL decode (\perp) and encode (\boldsymbol{T}) do these conversions and more for us.

First let's decode(\perp) binary numbers to decimal.

Decode(1) can work with other bases also for example days hours \& minutes

1605 $\quad 242460 \perp 1245 \quad$| ρ convert 1 day 2 hour and 45 minutes to minutes |
| :--- |
| $\rho(1 d a y=24 h r \times 60 \mathrm{~min})+(2 h r \times 60)+45 \mathrm{~min}=1605$ minutes |

And here's an example assembling a decimal number from it's components:
1011 352
A we have 1 thousand 3 hundreds 5 tens 2 ones
1352
A which becomes 1352

Now let's see how encode(t) works:(Note t needs multiple left side \#'s)

Now one further thing before we get on to the problem. In converting a decimal number to binary we need to know how many 2 's to put to the left of encode. The answer is: $1+$ the floor of the base 2 log of the number. In APL this is found like this.

$\begin{array}{ll} & 1+\lfloor 2 \otimes 9 \\ 4 & 1+\lfloor 2 \otimes 1000000 \\ 20 \end{array}$	1 plus floor(l)of base $2 \log (\otimes)$ of \# so 9 is 4 digit binary number(as we saw above) 1 million requires 20 digits.
So Here is how to do it for these two examples 9 and 1 million:	
	ค 9 in binary 4 digits needed 1000000 a 1 million in 20 binary digi
We will be using this a bit so lets make it easy and write a function.	
Dec2Bin $\uparrow\{((1+\lfloor 2 \otimes \omega) \rho 2)$	

Ok now lets get to work on the saucers. Lets assume there are 1 million saucers $(N=1000000)$ and we get the id's for random 100 Saucers $(n=100)$

$$
\begin{aligned}
& \mathrm{N} \leftarrow 1000000 \diamond \mathrm{n} \leftarrow 100 \text { or } N \mathrm{n}+1000000100 \text { would also work } \\
& \text { id+Dec2Bin" } n ? N \text { get } 100 \text { random id's from million \& make binary }
\end{aligned}
$$

Now here's the magic formula to predict N (the total \# of saucers) from a sample. In this case we already know N so we can see how well it works. Here's the formula in conventional math notation: Nest=(n+1)/n $\times \operatorname{Max}(i d)-1$

Now the equation in APL with the added conversion from binary to decimal.
 996750.83 A pretty close to a million
Note max is $/ /$ and $2 \boldsymbol{L}^{*}$ id converts each bin id to decimal id. Finally an extra set of parentheses is needed as APL goes right to left with no order of operations rules so to make the subtraction(-1) goes last \& rest needs parentheses around it.
Now lets put all this together in a function that we can play with to see if we can count the saucers with a smaller sample than 100. So lets put two functions together into a third function so what we are doing is clear.

$$
\begin{aligned}
& \text { SaucEst } \left.\leftarrow\left(((1+\rho, \omega) \div \rho, \omega) \times\left(\Gamma / 2 \perp^{*} \omega\right)\right)-1\right\} \text { ค est } N \omega=n \text { random bin id's } \\
& \text { SaucDo+\{SaucEst Dec2Bin" } \alpha \text { ? } \omega\} \\
& \text { a generate and estimate } N \\
& 100 \text { SaucDo } 1000000 \quad \text { a call program } \alpha=n \text { (sample) } \omega=N(\text { population) } \\
& \text { a estimate from } n=100 \text { (actual }=1 \text { million) }
\end{aligned}
$$

Now lets run it 500 samples of size 100 and get the average.

avg $100\{\alpha \text { SaucDo } \omega\}^{*} 500 \rho 1000000$

999218.1065
avg $100\{\alpha \text { SaucDo } \omega\}^{\prime \prime} 500 \rho 1000000$
1000095.813

So on the average it is pretty much perfect. It's unbiased, there is no tendency to over or underestimate N. Now the other question we must answer is, "Is it efficient?". If we have to run it 500 times that is not too good. We will be stuck at our telescope for a long time. Lets run some smaller samples and see what happens but instead of average lets look at variability using the Standard Deviation:
sdev $\leftarrow\{((+f(\omega-(\rho \omega) \rho a v g \omega) * 2) \div(1 \uparrow \rho \omega)-1) * 0.5\}$ ค avg sum sq div by mean
sdev 10\{ α SaucDo $\omega\}^{\bullet \bullet} 500 \rho 1000000 \quad$ ค 500 samples size 10 each
87455.71697
sdev $10\{\alpha$ SaucDo ω \}" $500 \rho 1000000$
91742.41377
sdev $100\{\alpha \text { SaucDo } \omega\}^{\bullet} 500 \rho 1000000$
9519.923639
sdev $1000\{\alpha$ SaucDo ω \}" $500 \rho 1000000$
1017.421925
sdev $10000\{\alpha \text { SaucDo } \omega\}^{\bullet} 500 \rho 1000000$ 100.0278067

ค standard deviation
ค 500 samples size 10 each
ค standard deviation
ค 500 samples size 100 each
ค standard deviation
ค 500 samples size 1000 each
a standard deviation
ค 500 samples size 10000 each
A standard deviation
So bigger samples are more accurate. Can you see an even more specific pattern? Lets divide SD by reverse of rounded sample sizes
$917429520101710011 \div \phi 10100100010000$
0.917420 .9521 .0171
a decreasing factor of ~ 10
That is interesting. Each time I increase sample size by a factor of 10 the variability decreases by a factor of ~ 10. Is this just chance? Lets test this theory by trying one more even larger sample. Since the last one took some time and I want try 100000 this time of course I will decrease the number of trials by a factor of 10 from 500 to 50 .

Lets check as we did before.
$917429520101710011 \div \phi 10100100010000100000$
0.917420 .9521 .01711 .1 ค Looks good

So to summarize the estimation equation is unbiased, It does not over or underestimate N. And if I increase the sample size by a factor of 10 the variability of my prediction decreases by a factor of ~ 10.
So if I saw saucers with the follow binary id numbers how many total Martian saucers is your best estimate.

1. (10001) (1 10000$)(1011)$
2. $\left(\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right)$
3. ($1000001110000112\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right)\left(\begin{array}{llllllllll}1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0\end{array}\right)$

And extra credit: what are all the above binary id numbers in decimal form? Answers:
By Jerry Brennan
Page 36 of 68
5/28/2020

```
1(9,24, 11=31),2(9, 11=15.5),3(1123,24,11, 612=1402.75)
(SaucEst(1 0 0 1)(1 0 1 1))(2\perp`(1 0 0 1)(1 1 1 0 0 0)(100 1 1))
```

Finally lets plot some data to see what variability looks like. So run it 10 times with each sample=20. The correct answer is 100 saucers. So 8 of 10 close but estimates of $90 \& 93$ are off. The avgerage is 97.9 Pretty good! ch.Set 'Footer' (Z↔'FreqPlot $\mathbf{c "}^{\prime 20}$ SaucDo "10p100') $\diamond ゅ Z$

Frequency Plot

Categories
FreqPlot \supset " 20 SaucDo "100100

How Often Will Current Year - By Your Age Be Even? *

This example taken from:
http://www.mathgoespop.com/2010/01/a-mathematical-new-years-game.html
Lets say you are 16 and the current year is 2014. Lets find out if in any of the next 12 years your age divides evenly into the corresponding year.

```
ages }<15+\imath1
years $2013+\imath12
```

Now we could just divide years \div ages \& look, but let APL select for us. Compare years \div ages to floor (L)years \div ages to see where it's even. Floor (l) rounds down. So floor on an integer will = the number. For decimals this will not be the case. $2=\lfloor 2$ but $2.3 \neq\lfloor 2.3$ because $\lfloor 2.3$ is 2 and $2.3 \neq 2$.
 By Jerry Brennan

So 3 rd and $12^{\text {th }}$ years are even. Lets use these 1 's and 0 's to select those years: ((years \div ages) $=($ lyears \div ages))/years
20162025
Or to see the ages:
$(($ years \div ages $)=($ (years \div ages $)) /$ ages
1827
Or with a little more fiddling both years and ages together:
$\uparrow(c(y e a r s \div a g e s)=(L y e a r s \div a g e s)) / " y e a r s$ ages ρ OR $\uparrow(d=L d \leftarrow \div / y a) / " y a \leftarrow y e a r s$ ages
20162025
1827
Now lets create a program to do this and have it automatically check all ages from you current age to age 100. पTS returns today's date and time and $1 \uparrow$ selects the first part of it which is this year. So α is set to the years from current to the year you will be 100. ω is input by you and should be your current age. The program has 2 lines separated by the \diamond. The first line sets up the ages and matching years and the second line does the selection
EvenYrDivAge $\leftarrow\{\alpha \leftarrow(1 \uparrow \square T S-1)+\imath \rho a g e s+\omega+0, \imath 100-\omega \diamond \uparrow(c d i v=L d i v) / \neq \alpha$ ages (div+ $\alpha \div$ ages $)\}$
Lets try the program now. Say you are 16 and the date today is 2015.
EvenYrDivage 15
$\begin{array}{rrrrrrr}2016 & 2020 & 2025 & 2040 & 2050 & 2080 & 2100 \\ 16 & 20 & 25 & 40 & 50 & 80 & 100 \\ 126 & 101 & 81 & 51 & 41 & 26 & 21\end{array}$
So there are 7 years that a person who is 15 in 2015 will have an age that divides the current year evenly. Those ages are $16,20,25,40,50,80$, and 100. The last row above shows the other factor of the division. So for example $16 \times 126=2016$.

Are all Numbers of Form abcabc Divisible by 13? ***

How can that be? Most numbers are not divisible by 13. Lets check it out. $123123 \div 13$ ค 123123 follows the abcabc format: $a=1 \mathrm{~b}=2 \mathrm{c}=3$ 9741 a yes that one is
$264264813813547547 \div 13$
203286260142119 ค yes those 3 are
Lets write a program to test this out more thoroughly with 3 little fns.
rand3u $\{\omega$? 9$\}$ A make 3 unique random digits $a b c w i t h$ values 1-9
dup $2 \leftarrow\{10 \perp \omega, \omega\}$ a duplicate $a b c$ and smooshes them together: abcabc div13 $\{(L x)=x \leftarrow \omega \div 13\}$ a x is \# $\div 13$. now see if round down (L) of $x=x$
div13 dup2 rand3u $3 \quad$ a test it. remember apl works right to left
1 ค 1 yes the abcabc \# is evenly \div by 13
div13 \quad ↔dup2 $\quad \square$ rand3u 3 a use output windows to see intermediates

258
258258
1

ค 3 random digits made by rand3
ค 3 digits duplicated and smooshed by dup2
A \# $\div 13$ \& compare to \#'s floor $1=d i v$ by 13
div13" $\square \leftarrow$ dup2" $\square \leftarrow r a n d 3 u^{*} 3$ 3 9 try it twice using each (")

```
9 59 5 3 7
A the two different a b c's
959959 537537
^ each duplicated & smooshed together
1 1
a each is evenly % by 13
```

+/div13" dup2" rand3u" 50000p3 a try 50,000 times \& add up 1's(+/)
ค all 50,000 \#'s were divisible by 13

What if a b \& c are not unique \#'s? For example is 111111 divisible by 13. Lets revise rand3u to allow non unique numbers \& 0 's and try again. rand $3+\{-1+? \omega \rho 10\}$ A creates random numbers that may not be unique rand3" $4 \rho 3$
218611061585 ค group 2 and 4 are not unique sets of \#'s
A group 3 will be 5 digit \# 61061
+/div13" dup2" rand3" 50000p3 ค try with possible non unique a b c's
50000
ค 50,000 non unique are evenly \div by 13

What Is Your Name Worth? *

If each letter in alphabet was worth a different amount of points ($A=1$ $B=2 \ldots \mathrm{Z}=26$, whose name would be worth the most points?

If $A=1 \quad B=2 C=3$. . . $Z=26$ then $A B E$ would be worth $1+2+5=8$ points.
In APL There is an system function DA which returns the capital letters in the alphabet. In boxes below boldface is APL, rest after A is comments.

DA	A type DA into APL session
ABCDEFGHIJKLMNOPQRSTUVWXYZ	
ρ and this comes back. Try it!	

Now we can use dyadic index of(r) to find where in DA different letters are in a name (must be capitals).

Now a fns to get index numbers of letters \& then add them up using +/: NAMSUM $\{+/ \square A \imath \omega\}$ ค note APL goes right \rightarrow left: finds indexes then adds NAMSUM 'ABE' \quad call fns NAMESUM pass it a name to index and add 8 ค So ABE's score is 8

Lets try on few names: (again remember they must be all capitals)
NAMES + 'JOHN' 'MARY' 'ROBERTA' 'VICTOR' 'TROY' ρ store names
NAMSUM"NAMES a call fns NAMESUM for each(*) of the names in NAMES $4757798778 \quad$ a so VICTOR the fourth name wins.

Lets make a labeled table \& bar graph so we can see the results better:

Now put cursor on DATA \& click Barchart icon on toolbar at top or enter:

Rate Writing Based Upon Word And Sentence Length

First lets store some data in variable lincoln. Here is something he wrote:

> If we could first know where we are, and whither we are tending, we could then better judge what to do, and how to do it. We are now far into the fifthyear, since a policy was initiated, with the avowed object, and confident promise, of putting an end to slavery agitation. Under the operation of that policy, that agitation has not only, not ceased, but has constantly augmented. In my opinion, it will not cease, until a crisis shall have been reached, and passed. "A house divided against itself cannot stand." I believe this government cannot endure, permanently half slave and half free.

There're many ways to read data into APL. In this case the easiest way is to use cut and paste, but text is too long so do this in two steps:.

$$
\text { lincoln+'If we could' } \rho \text { type this and press enter. }
$$

Now open up edit window by double click on word lincoln \& cut \& paste above text into window. Incidentally the edit window is very useful to add, change, delete or just look at any information in any variable or program you have already created. All you have to do is double click on its name.

First a fns to elim unneeded punctuation, but keep sentence end stuff .?!

```
elim\leftarrow{(~\omega\epsilon\alpha)/\omega} \beta fns to eliminate \alpha chars from \omega
sam*',;:"'elim lincoln & eliminate (,;:") from lincoln and store in sam.
Notice that.?! are not in the list, so .? ! will be left in for now.
```

Now fns to partition character strings into either words or sentences, default partition by spaces($\alpha \leftarrow^{\prime}$ '), so each partition contain 1 word so we can count word length with (ρ). Keep program flexible so can also partition by sentence end markers($\alpha='$? ? '') so we can also count words in sentences.

```
    partition\leftarrow{\alpha\leftarrow' ' \diamond पML↔3 \diamond (~\omega\in\alpha)c\omega}\rho partition fns (default is words)
    psentence<'.?!' partition sam ค sentence contains the sentences
6
    \rho the \rho displays that there are 6 sentences
```

Now two fns: one to average word length \& one to average number of words per sentence in Lincoln's speech. Steps: 1)eliminates all punctuation including .?! first, then 2) partitions into words using the default spaces, then 3)finds the size of each word and then 4)averages those sizes. avgwordlent\{avg ρ "partition ', : : ?!"'elim $\omega\}$ ค elim .?! also here
By Jerry Brennan

avgwordlen lincoln
 4.447619048

Next fns 1)eliminates punctuation except .?! then 2)partitions into sentences using .?! and then 3)partitions each sentence into words using spaces, then 4)finds the number of words within each of the sentences (${ }^{* *}$) then 4)exposes ($0, /$) the word counts for each of the sentences and then 5)finds the average number of words for the sentences.

Now compare Lincoln and Shakespeare, using some text from Romeo and Juliet.

```
        avgwordlen* lincoln romeo
    4.447619048 4.135231317 & so Lincoln uses very slightly longer words
        avgsentlen " lincoln romeo
17.5 21.61538462
    A but Shakespeare sentences are ~4 words longer
```


Stylometry: The analysis of text documents

Stylometry is often used to attribute authorship to anonymous or disputed documents. It has legal, academic \& literary applications, ranging from ? of authorship of Shakespeare's works to forensic linguistics. (Wikipedia)
I will show some APL functions I created to analyze and compare different authors. In section below I analyze/ compare first 6 chapters from Mark Twain's Huckleberry Fin with 3 chapters from Mary Shelley's Frankenstein.

) load Anna3	ค to access the Stylometry Fns first load Anna3
)cs Stylometry	ค then change to Stylometry namespace (subfolder)

A Good text data source www:gutenberg.org. Project Gutenberg offers 45,263 free ebooks to download. The easiest way to download is to go to Gutenberg.org, find a .txt version of a book and display it. Then cut and paste sections or chapters into character variables in Anna3.Stylometry like this:

Then I put 9 chapter names in var called Txts. [see Txts in VARS section]
Once I have saved my sample text files, then I choose ways to compare them:

1. Compare average sentence length. (use APL: AvgSentLen)
2. Compare average word length. (use APL: AvgWordLen)
3. Compare vocabulary level. (use APL: VocLevel using 32 levels of Dunn-Rankin vocabulary test L1-L32)
4. Compare percentage of function words used. (use APL: PercentWords and file FUNCTIONWORDS(321 common function words).
5. Compare percentages of positive and negative words used. (use APL: function PercentWords with files PosWords(114) and NegWords(141).
6. Lets compare average sentence length for these 9 chapters: 6 from Twain and 3 from Shelly. Shelly's sentences tend longer, but it is not clear cut. 2ゅAvgSentLen"ゅ"Txts
```
18.43 15.55 19.35 14.05 14.53 19.98 21.67 23.65 19.43
```

2. Lets compare average word length for these 9 chapters: 6 from Twain and 3 from Shelly. It looks like Shelly's words are consistently longer with Twain always in low 4's and Shelly always in the low 5's.
$2 \Phi A v g W o r d L e n " \Phi$ "Txts
$4.204 .304 .294 .154 .284 .145 .165 .19 \quad 5.11$
3. Let's compare Vocabulary level for these 9 chapters: 6 from Twain and 3 from Shelly. It looks like Shelly's vocabulary level is much lower than Twains except for Twain's chapter 4 which was lower than all of Shelly's.

$$
2 \Phi \text { VocLevel" }{ }^{\prime \prime} \text { "Txts }
$$

$11.7014 .35 \quad 10.55 \quad 3.43 \quad 11.2511 .75 \quad 5.44 \quad 5.08 \quad 6.26$
4. Let's compare percentage of FUNCTIONWORDS for these 9 chapters: 6 from Twain and 3 from Shelly. FUNCTIONWORDS is a variable of 321 words useful in detection of different people's styles. Function words are the words we use to make our sentences grammatically correct. Pronouns, determiners, and prepositions, and auxiliary verbs are examples of function words. Words such as: a, about, and, as, my, she, almost, before, and except are all function words. http://myweb.tiscali.co.uk/wordscape/museum/funcword.html Shelly's use of function words is consistently much lower than Twains.

2ゅPercentWords" Φ "Txts

$59.8259 .0959 .5057 .1258 .56 \quad 60.02 \quad 52.38 \quad 51.81 \quad 53.13$
Now one APL fns computes \& labels all 6 Stylometrics(stored in variable
Fnames) for the 9 chapters(stored in Txts). [see VARS section below]

Fnames StyTbl Txts

Text \backslash fns AvgSentLen AvgWordLen VocLevel FunctionWords PosWords NegWords
TwainHuckFin1 $18.19 \quad 4.20 \quad 11.70 \quad 59.13 \quad 1.90$
TwainHuckFin2 15.55
4.30
14.80
58.31
.37
.73
TwainHuckFin3 19.35
$4.29 \quad 10.55$
58.86
.26
.64
TwainHuckFin4
14.05
$4.15 \quad 3.43$
56.49
.63
1.33
14.41
$4.28 \quad 11.25$
56.82 . 54
1.01
19.98
4.14
11.75
59.15 . 69
1.09
$5.44 \quad 52.38$
.74
.50
Frankenstein1
Frankenstein2
23.65
5.19
5.08
51.81
1.04
.25
Frankenstein3 19.43
5.11
6.26
53.13
.45
.53

SYMB↔ '.?! $\sim @ \# \$ \% \wedge \& *() _+-=[\{]\} \backslash \mid ;: ",<>/ 0123456789^{\prime}$

FUNCTIONWORDS (321) words provide sentence structure but limited meaning.
Some examples follow:
a about above after again ago all almost along already although always am among an and another any anybody
PosWords(114) words like:free easy lucky. NegWords(114) like:bad sad hurt

Fnames \boldsymbol{L}^{\prime} AvgSentLen' 'AvgWordLen' 'VocLevel Fnames,ヶ'PosWords PercentWords' 'NegWords

---FNS (in Anna3.Stylometry)
AvgSentLen $\leftarrow\{\operatorname{avg} \boldsymbol{\prime}, / \rho$ "partition" $(3 \uparrow S Y M B)$ partition ($3 \downarrow$ SYMB) elim $\omega\}$
AvgWordLen \leftarrow avgs, / ρ "partition SYMB elim $\omega\}$

PercentWords $\leftarrow\{\alpha \leftarrow$ FUNCTIONWORDS $\diamond>100 \times(\rho \alpha$ FindWords $\omega) \div$ ppartition $\omega\}$

---UTILITY FNS (in Anna3.Stylometry)
avg $+\{(+/ \omega) \div \rho \omega\} \quad \rho$ average $=s u m$ of \#s(+/) divided by(\div) \# of numbers (ρ) FindWords $\leftarrow \alpha \leftarrow$ FUNCTIONWORDS $\diamond(($ words $) \in \alpha) /$ words \leftarrow partition case SYMB elim $\omega\}$ elim $\leftarrow\{(\sim \omega \in \alpha) / \omega\} \quad \rho$ elim unneeded SYMBOLS α
partition $\leftarrow\left\{\alpha \leftarrow^{\prime}\right.$ ' $\left.\diamond \square M L \leftarrow 3 \diamond(\sim \omega \in \alpha) \subset \omega\right\}$ a brk txt by α (ie spaces or periods) case $\leftarrow\{r e s \leftarrow \omega \diamond \alpha \leftarrow 0$ ค default low case $\alpha: 0=$ up2lower change $\alpha=1=$ lower2up
 (bool/res) \leftarrow To[Fromz(bool $\leftarrow \omega \in$ From)/ ω] \quad a change only letters up/down res $\quad \rho$ return modified string res \}

Four Fun With Numbers *****

The follow are 4 fun/amusing math/number problems \& their solution in APL. Have fun and remember after you execute a line you can either put the cursor on any of the variables created to see what they look like or type their name on a line to see them displayed.
Find all 3 digit whole positive numbers whose digits are the same when added or multiplied together.
Remember Encode(t) can be used to break numbers into digits like this:
101010 т126 \quad a to break up one 3 digit decimal number

126
(c10 10 10) t"34 126 A \& this to break up 2 or more numbers at once 034126

So here is the solution:

123132213231312321
Find two positive numbers that have a 2 digit answer when their digits are added together and a 1 digit answer when digits are multiplied together.

$$
((10 \leq+/ \because d) \wedge(10>\times / \cdots d+(c 10 \quad 10) \tau \because n)) / n \leqslant 9+\tau 90
$$

1991
Find all two 2 digit whole positive numbers that have same answer when their digits are multiplied together as when digits are divided by each other.

$$
\left((\div / \cdots d)=\left(\times / \cdots d \leftarrow\left(\begin{array}{ll}
c 10 & 10
\end{array}\right) T \ddot{n}\right)\right) / n \leftarrow 9+290
$$

DOMAIN ERROR

A seems logical but fails 9 can't divide by zero so.

So here is the fix. Need to turn digits around so 2030 become 02 and 03 etc. the reverse symbol(ϕ) will do this.
By Jerry Brennan

Find a 10 digit number containing each digit once, so that the number formed by the last n digits is divisible by n for each value of n from 110. For an easy example lets try 3 digits: 168 works because $1 \div 1,16 \div 2$, and $168 \div 3$ all are evenly divisible with no residues(l) or decimal parts.
Let's break this problem into steps we have to do:

1) get some unique random digits $0-9$, (each digit only once)
2) break digits up in increasing pieces (116 168)
3) do the divisions by $1,2,3, \ldots 10,(1 \div 1,16 \div 2$, and $168 \div 3)$
4) check if the answers have no remainders(residues(1)), and
5) make a function repeatedly call it until it finds an answer.

Now fiddle on your own, then look below at my 5 steps to the solution.

1) I can imagine at least two different ways to get the random numbers. $\Phi 10 \perp-1+3$? 10 ค 3 UniqueRand\#1-10, $-1(0-9)$, squish, make \# to char 879
OR even easier way using built in DD which ='0123456789' as characters.
DD[3?10]
A 3 rand\# with no replacement indices of $\square D$

251
2) Now break the char string into increasing pieces: '2' '25' '251'

$225251 \quad$ A more general way (23) $\dagger^{\prime \prime} c^{\prime} 251^{\prime}$
3) now do the divisions: actually find the residues or remainders (1).

$$
\left.(23)\right|^{*}{ }^{*}(23) \uparrow^{*} c^{\prime} 251^{\prime}
$$

$012 \quad$ A so remainders for $2 \div 1=0 \quad 25 \div 2=1 \quad 251 \div 3=2$
4) Now check to see if each remainder(1) $=0$

5) Create function to do all the above

NDigit $+\left\{\wedge / 0=n \mid \Phi{ }^{*}(n+i \omega) \uparrow^{*} c \mathrm{c}+\square D[\omega\right.$? 10$\left.]: \square+c\right\}$ ค ω is input ie 3
The fns is inside of \{\}. It's name is Ndigit. The code to the left of the : is called the guard. If the guard is true(1) The code to the right ($\mathrm{D}+\mathrm{c}$) with be executed. In this case the passing number(c) will be displayed. If the guard is false, the code to the result will not be executed and nothing will be displayed. Now lets try it 10 times for the 3 digit number.

789

a try 10 random 3 digit \#'s. It finds 5 \#'s
801
A so residuals all=0: 7 $\div 18 \div 2789 \div 3$
984
A so residuals all=0: $8 \div 180 \div 2801 \div 3$
A so residuals all=0: $9 \div 1 \quad 98 \div 2 \quad 984 \div 3$
By Jerry Brennan

Now lets try the real problem with 10 digits. Warning there is only one correct number and there are many numbers to test so it will take a lot of runs. On my computer it took a number of minutes to find the 1 number. You might work your way up from 100010 digit numbers using NDigit ${ }^{\text {" }} 1000 \mathrm{p} 10$. Good luck. Tell me when you find it (hidden answer=4138006086-321458796).
Extra credit. If you think about it a bit, you may be able to eliminate some numbers and design a fns that runs faster by selecting only certain random numbers. Think for a minute and only then read my next sentence that will give you one such hint. OK here is my hint. The last digit is the tenth digit and that longest number must be divisible by ten and the only numbers that are divisible by ten end in zero so that is what the last digit must be. So in this case you could simply search for a nine digit number using the numbers one through nine and then tack a zero on the end. This should speed things up considerably. Can you create a special fns called NDigit10 which will only do the 10 digit problem. The NDigit fns above is of course more general and will do all problems from 1 to 10.
There are constraints on other digits also which could be used. There's a trade off as it will take more code and thought on your part but it will strain the computer less. Best to allocate resources between your brain \& your computers brain to get job done most efficiently. You have a powerful partner but you have skills it does not have. Together the two of you can go very far. Alone neither of you will probably amount to a hill of beans.

How Many Draws To Get An Ace? ****

The following fns shows average \# of draws to get an ace. The answer is unexpected. The fns shows its lines of code as it runs. Here is the fns:
FirstAce;S;first;avg
'The First Ace Problem from Fifty Challenging Problems in Probability'
' by Frederick Mossteller 1965 Harvard University'
$S \leftarrow\{D \leftarrow \omega \diamond \Phi \omega\}$ a utility to both show and execute a line
'What is average number of cards to draw before getting an ace?'
S'4?52 A The positions of four aces randomly placed in deck of 52 cards?'
S'L/4?52 A Find $1 \mathrm{st}(\mathrm{min})$ of 4 new random ace positions in deck of cards.'
S'first $\{L / \omega ? 52\}$ ค Turn above code to fns to find first position of ace.'
S'first 4 ค Call it once to find position of first ace.'
S'first ${ }^{-10 \rho 4 ~} 10$ Call 10 times, find position of 1 st ace in 10 shuffles. S^{\prime} avg $\leftarrow\{(+/ \omega) \div \rho \omega\}$ ค Write fns to average results.'
S^{\prime} avg first ${ }^{-500000} \mathbf{5} 4$ ค Call it 500,000 times and average results.' 'So ~ 10.6 cards to draw to get an ace on the average.
'More than 500,000 fills the workspace so here is a little workaround.' S^{\prime} avg\{avg first $\left.{ }^{*} 500000 \rho 4\right\}{ }^{*} 10 \rho 0$ A Avg of 500,00010 times and avg that.
'Notice these details in the code:'
1: Unnamed fins: \{avg first $\left.{ }^{*} 50000004\right\}$ as called only once inline.'
' 2: The 10 zeros: (10p0) not used. They only make fns run 10 times.
' 3: 10.6 probably not your bet to be average \# of draws to get an ace.
' 4: Can you modify fns to see avg \# of draws to get any spade?'
' 5: Can you simplify fns to get avg \# of throws of dice to get a 3 is?'
By Jerry Brennan
Page 45 of 68
5/28/2020

And here is the fns both running and showing all its code:

```
    FirsAce
The First Ace Problem from Fifty Challenging Problems in Probability
    by Frederick Mossteller 1965 Harvard University
What is average number of cards to draw before getting an ace?
4?52 & The positions of four aces randomly placed in deck of 52 cards?
48 20 51 5
L/4?52 A Find 1st(min) of 4 new random ace positions in deck of cards.
1 7
first\leftarrow{L/\omega?52} A Turn above code to fns to find first position of ace.
first 4 A Call it once to find position of first ace.
2
first "10p4 & Call 10 times, find position of 1st ace in 10 shuffles.
132 19 13 22 27 20 16 8 17
avg\leftarrow{(+/\omega)\div\rho\omega} ค Write fns to average results.
avg first "500000p4 & Call it 500,000 times and average results.
10.59594
So ~10.6 cards to draw to get an ace on the average.
More than 500,000 fills the workspace so here is a little workaround.
avg{avg first " 500000\rho4}" 10p0 A Avg of 500,000 10 times and then avg those 10 averages.
    10.5960054
Notice these details in the code:
    1: Unnamed fns: {avg first "500000p4} If you wanted to use it more you should name it.
    2: The 10 zeros: (10\rho0) not used. They only make unnamed fns run 10 times.
    3: 10.6 is probably not your bet to be the average # of draws to get an ace.
    4: Can you modify fns to see avg # of draws to get any spade?
    5: What would you do to get avg # of throws of dice to get a 3?
    6: Can you determine avg # draws to get both a 4&5 ?
```


Five Card draw Probabilities ****

1. If draw 5 cards what is probability of $1,2,3$ or 4 aces?
$\left\{\left(+/\{(+/(52 \uparrow 4 \rho 1)[5 ? 52]) \epsilon \tau 4\}{ }^{\circ} \omega \rho 0\right) \div \omega\right\} 1000000 \quad$ ค $1,2,3$ or $4(\epsilon \imath 4)$
0.34085 ค $\sim 34 \%$ for $1-4$ aces if 1 million random deals

Now lets look at 1 or 2 or 3 or 4 aces individually:
$\{(+/\{(+/(52 \uparrow 4 \rho 1)[5 ? 52]) \in 1\} \cdots \rho 0) \div \omega\} 1000000$
ค 1 ace (ϵ 1)
0.29966

ค 30% chance 1 ace

$$
\begin{aligned}
& \{(+/\{(+/(0, / 448 \rho " 10)[5 ? 52]) \in 2\} \ddot{\bullet} \omega \rho 0) \div \omega\} 1000000 \text { ค } 2 \text { aces }(\epsilon 2) \\
& 0.039946
\end{aligned}
$$

ค $\sim .1 \%$ chance 3 aces
$\left\{\left(+/\{(+/(448 / 10)[5 ? 52]) \in 4\}{ }^{*} \omega \rho 0\right) \div \omega\right\} 1000000 \quad$ ค 4 aces $(\epsilon 4)$
0.000016
A $\sim .002 \%$ chance 4 aces

Here is how it works. $4 \rho 1$ makes 4 ones. $52 \uparrow$ takes the 4 ones and pads with 48 zeros. (There are many ways to do this as I demonstrate above in each example.)
Ones will be the hits and zeros the misses. 5 ? 52 takes 5 random numbers between 1 and 52 without replacement.

The random numbers are used to index the 52 1's and 0 's generated. If the the random index numbers are between 1 and 4 a 1 will be selected(an ace) otherwise it is not one of the first four aces and a 0 will be picked.
These 5 selections(1 for each ace and 0 otherwise) are summed up and to see if they are a member of (ϵ). The 1 million results ($0=$ no $1=y e s$) are then again summed and divided by the 1 million. Note there is a fns \{\} inside another fns\{\} The inner fns runs 1 million times summing up the times correct \# aces are found in a million tries. The outer fns divides the sum by 1 million to get the percent. Another note " $\omega \rho 0$ passes 0 to the inner fns 1 million times. The 0 is not used in the inner fns, it just causes the inner fns to run 1 million times spewing out a 1 or 0 each time that is then summed (+/) and divided by $1 \mathrm{million}$.
2. If draw 5 cards what is prob of $3,4,5$ in a row of same suit.

+ cards $\leftarrow(52 \rho \imath 13)+(13 / 0204060)$ ค create deck 4 suits 13 cards in each 12345678910111213212223242526272829303132 $334142434445464748495051525361 \quad 6263646566$ 67686970717273

Cards are created in more detail this time as I have to note different suits and numbers to check for cards in a row in a certain suit. So first suite (ace,2-10,jack, queen,king=r13). Subsequent suits are increased by 20 so each card has a unique number and each suit has each card increasing by 1. Note there is a gap between each suit(14-20, 34-40 and 54-60).

First we also need a fns to sort the drawn cards in order:

sort $\leftarrow\{\omega[\Delta \omega]\}$

Now lets look for runs of 3 or more (ie 2 differences=1 for a run of 3, 3 diffs=1 for a run of 4 and 4 diffs=1 for a run of 5)

Now lets take the shows(\square) out and run it a million times

```
{(+/{2\leq+/1=|2-/sort cards[5?52]}*"\omega\rho0)\div\omega}1000000
0.037195 & ~3.7% of time will I get a run of 3 or more in the same suit.
```

Now lets look at runs for 3,4 and 5 separately

```
{(+/{2=+/1=|2-/sort cards[5?52]}"\omega\rho0)\div\omega}1000000
0.035668 & ~3.6% runs of 3
    {(+/{3=+/1=|2-/sort cards[5?52]}*"\omega\rho0)\div\omega}1000000
0.001466 ค ~.1% runs of 4
    {(+/{4=+/1=|2-/sort cards[5?52]}**\omega\rho0)\div\omega}1000000
0.000013 ค~.0013% runs of 5
```

3. What are odds of something simple like 1 pair? This probability is 0.422569

How would you go about this? (Hint: make each suit string equal) http://www.math.hawaii.edu/~ramsey/Probability/PokerHands.html

An Optimal Stopping Problem: Dating For Dummies

How many should you date before deciding to marry next one better than anyone you dated so far if you want best odds of getting best 1 or maybe 1 in top 10? Assume nd=\# of total people you could date, s=\# you date and top=\# of best people you would be willing to accept(1 if you want best, 2 if either of top 2 would be good enough etc.)

Here is the fns: The actual code is boldface. All the rest is comments. dates $\leftarrow\left\{\begin{array}{l}~\end{array}\right.$ each time fns called returns 1 if found good enough mate else 0 A Chapter 20:An Optimal Stopping Problem or maybe Dating for Dummies ค How many to date before picking a mate from book by Paul Nahin 2008 A Digital Dice:Computational Solutions to Practical Probability Problems ค or https://www.ted.com/talks/hannah_fry_the_mathematics_of_love\#t-598603
a Input and Output
A return 1 if pick person in "top" range of sample "s" by picking first A date who is better than the best of "nd" people in the dated group. nd $\leftarrow \alpha \diamond$ s top $\leftarrow \omega$ $ค$ nd=\# dates $s=s a m p l e$ size top=\# of good enough dates ($s=0) v(s=n d): t o p \geq ? s$ if picked first or last date odds are: ~top/s ranksњs?s 9 make random ranks for all dates. (1=best to s=worst) bestdate \leftarrow L/ndiranks ρ bestdate=lowest rank(nd个ranks) of those dated left n d \downarrow ranks ρ left=rest taking away those dated at beginning.
 top $\geq 1 \uparrow$ better, 10000000 ค 1 if 1 st pick of better in top range else 0 A sample probability runs: (only repeated run averages are really useful) ค 2 dates 111 ค nd=2 $s=11$ top=1, return 1 if best=(next date>first two)
a following all call fns 10,000 times \& average to get odds of success
a next 2 from book show odds for 0 to 11 dates from total of 11 people

ค next example s=1000, you date 7 various \#'s (50xı7)[50 100 150...350]
 \}
On page 94 of Paul Nahin's book there's a probability table that the above program will approximate. So let's run it 10,000 times for each possible number of dates and average results to get his table for each number of possible dates. So if the number of all possible dates is nd=11 \& you want the very best person(top=1). What are the odds of you getting the best person if you date $0,1,2,3,4,5,6,7,8,9$, or 10 people before picking. $x,[1.5]\{4 \Phi$ avg ω dates"c11 1\}"10000p"x+0, 110 a avgs 100,000 trials
$0 \quad 0.0913 \quad \rho$ actual odds first person is best $1 / s=1 / 11=.0909$ 9\%
10.2649
$20.3448 \quad$ a odds improving but still better to keep dating
30.3959
$40.3991 \quad$ a best odds $\sim 40 \%$ if date 4 then pick next 1 better than $1-4$
$50.3777 \quad$ a odds begin to decline $\sim 38 \%$. You should have picked sooner.
60.3541 ค $1 / e=$
$7 \quad 0.2994$

| 8 | 0.2456 | ค $<25 \%$ chance of finding best one |
| ---: | :--- | :--- | :--- |
| 9 | 0.1705 | |
| 10 | 0.0906 | ค actual odds last person is best $1 / \mathrm{s}=1 / 11=.0909 \quad 9 \%$ |

So if 11 people to date best odds of finding best 1 is date 4 then pick next one better than any of first 4. But remember this is only best odds $\sim 40 \%$. $\sim 60 \%$ of time you will miss very best one. Experiment seeing odds of getting 1 of the top 2 or 3 . Or imagine 1000 in dating pool. How many should you date to get maybe 1 of the top 20. Running this program may not be quite as much fun as dating but it's lots faster and bit cheaper than having a couple hundred dates. Many decisions can be improved using this method. Can you think of some? How about: finding/buying/selling/renting: career, school, pet, house, apartment, car, bike. Anything that's gone once you say no. Or maybe you figure you want to have children by age 35 and you are now say 18. How many years should you date before you pick the next one who is better than any you have dated so far. Here is the answer:

The twins problem (using math, Matlab and APL) ***

From: Will You Be Alive 10 Years From Now? by Paul Nahin 2014
A Very Fun Book of curious questions in probability
In February 2008 I received a very interesting e-mail from Bruce C. Taylor, a professor of biomedical engineering at the University of Akron. Bruce had just been reading my book, Duelling Idiots (Princeton 2002), and that prompted him to write to me. Here's what Bruce wrote:

I have an interesting probability problem that I have not been able to solve and I am just curious to see if you can come up with a solution. The problem came up when in one of our classes here I was assigning lab groups using a random number generator. As it turns out the class had 20 students, two of whom were related (twin sisters). Well, as luck would have it, the two sisters ended up in the same lab group of four. I had divided the class into five groups of four students. I, and a colleague, got to wondering what was the probability that the two sisters would end up in the same group. I originally thought that this would be a trivial problem but so far it has beaten me. I did write a MATLAB? program to solve the problem via a probabilistic model and I came up with a probability of 0.16 after 100,000 repetitions. I think that this is the correct answer but I can't, for the life of me, arrive anywhere near the same answer analytically. I thought maybe you'd like to take a crack at it.

Well, who could resist that?
After a bit of thought I did arrive at a theoretical result, a rational fraction approximately equal to 0.1579 , and so I wrote back to Bruce to ask, "You said the [Monte Carlo] estimate was 0.16. Was it actually somewhat less?" Back came Bruce's response: "I ran the simulation three times at 100,000 reps. each and came up with the following: (1) 0.1591 , (2) 0.1570 , (3) 0.1557 ." Not too bad an agreement with my fraction. I then wrote my own MATLAB? simulation code, ran it for ten million repetitions, and got an estimate of 0.1579092 , an even better agreement with my theoretical fraction.

2.2 THEORETICAL ANALYSIS

To theoretically derive the answer to Bruce's question, here's what I sent him,, where $\binom{x}{y}$ is, as in the first problem, the binomial coefficient $\mathrm{x}!/(x-y)!y!$, with x and y both non-negative integers and $\mathrm{y} \leq \mathrm{x}$.
First, to find the total number of ways (TNW) to randomly place 20 students into 5 groups of 4 each, imagine 5 bins. In the first bin we place 4 from 20 , then 4 from the remaining 16 in the second bin, then 4 from remaining 12 in third bin, and so on. Combination formula follows

$$
\text { Thus, TNW }=\binom{20}{4}\binom{16}{4}\binom{19}{4}\binom{8}{4}\binom{4}{4}
$$

$x / 4!20161284$ ค in APL 4 paired each \# right of comb symbol ! then \times / multiplies
Next, to find the total number of ways that the twins are together (TNWTT) in the same bin, we first imagine that the twins are glued together. When we select a twin, we automatically select the other one, too. There are 5 ways to place the glued twins into one of the bins, leaving 18 students. There are $\left({ }^{1} 2^{8}\right)$ ways to select the 2 students who join the twins, leaving 16 students. We then finish the analysis as before, that is

TNWTT $=5\binom{18}{2}\binom{16}{4}\binom{12}{4}\binom{8}{4}\binom{4}{4}$.

$5 \times x / 24444!18161284$ a in APL

Note: ! is combination symbol \times / multiplies all combinations $5 \times$ multiplies that result by 5

Now the probability we are after is:

$$
\frac{\text { TNWTT }}{\text { TNW }}=\frac{5\binom{18}{2}}{\binom{20}{4}}=\frac{518!/ 16!2!}{20!/ 16!4!}=5 \frac{18!4!}{20!2!}=5 \frac{(4)(3)}{(20)(19)}
$$

$$
=3 / 19=.15789 \ldots
$$

```
(5\times2!18)\div(4!20) = 0.15789473684210525 & Using APL combination symbol!
```

Note: ! 6 is factorial 6 \& $2!6$ is combinations of 6 taken 2 at a time.
Now, as easy as the above analysis may appear, an early reviewer of this book (Nick Hobson) pointed out to me that there is an even easier way to see the result in a flash. A total of 20 lab slots are to be filled, with 4 slots in each lab section. One of the twins, of course, has to be in some lab section, leaving 3 slots in that section still available out of the 19 total slots that are still available. So, the probability that our second twin gets one of those 3 slots (and so joins her sister) is $3 / 19$. That's it!

2.3 COMPUTER SIMULATION

To write a Monte Carlo simulation, I found the following imagery helpful. (I wrote my simulation code before receiving Nick's clever observation, so perhaps there is a better way to simulate-l'll leave that for you to explore!) I stalled by visualizing the 20 students lined up in front of me in some (random) order, standing in a row, shoulder to shoulder. Each holds a slip of paper. These slips each have a single number on them; there's a 2 on each twin's slip, while all the other students have a 1 on their slips. Starting at the far left (student 1), the first four students are assigned to lab section 1, the next four students to lab section 2, and so on, with students 17 through 20 assigned to lab section 5 . To simulate the placement of the twins into their lab sections, all we need do is randomly generate two different integers from 1 to 20, integers that determine the positions where the twins stand in the shoulder-to-shoulder row.
The simulation code can determine if the two twins have been assigned to the same lab section by simply adding up the numbers, in each lab section, on the paper slips held by the students in that section. If a lab section has neither twin, the group sum will be 4 , while if a lab section has one twin, the group sum will be 5 . A group sum of 6 , however, means we have a lab section that contains both twins. This is the decision logic behind the simulation code twins.m. I make no claims that twins.m is a superoptimal (in some sense) code, just that it is easily understood and executes in a reasonably short time (ten million repetitions on my quite ordinary, bottom-of-theline computer required less than 23 seconds to run). After the code listing, I'll give you a quick walkthrough of what each line is doing (the line numbers at the far left are not part of the code but are included simply as reference tags for the walkthrough).

twins.m

```
01 together=0;
02 for loop1=1:10000000
03 lab=ones(1,20);
04 twin1=floor(20*rand)+1;
05 twin2=twin1;
06 while twin 1= =twin2
07 twin2=floor(20"rand)+1;
08 end
09 lab(twin1)=2;
10 lab(twin2)=2;
11 groupsum=zeros(1,5);
12 for loop2=1:5
```


Line 01 initializes the variable together to zero; at the end of ten million simulations together will be the number of simulations in which the twins were assigned to the same lab section. Lines 02 and 23 define the outer for/end loop that cycles the code through the ten million simulations. Line 03 defines the row vector lab, with all of its 20 elements initially equal to 1 . The value lab (k) is the number written on the slip of paper held by the student in the kth row position. Initially, then, all 20 students have a 1 on their individual slips of paper. Line 04 assigns twin1 equal to an integer value selected at random from 1 to 20 , and line 05 assigns the same integer to twin2. Since the two twins can't, of course, have the same position in lab, lines 06 through 08 then continually assign twin2 a new random integer value until twin1 and twin2 have different integer values. Lines 09 and 10 write a 2 on the slip of paper each twin holds, leaving the other 18 students holding slips of paper each with a 1. Line 11 initializes all five elements of the row vector group-sum to zero. The two nested loops defined by lines 12 through 17 run through the 20 elements of lab, four at a time, from left to right, and generate the five element values of groupsum. Finally, the two nested loops defined by lines 18 through 22 check each element of groupsum and, if a value of 6 is detected (indicating both twins are in the same section), then together is incremented by one. Once the ten million simulations are finished, line 24 prints the code's estimate of the probability of the twins being in the same lab section (0.1579092), an estimate very close to the theoretical value.

Now My 1 line of APL to compare to Nahim's 24 lines of Matlab

$5 \times a v g\{11 \equiv 12 \epsilon 4 ? \omega\}{ }^{*} 10000000 \rho 20$
 0.157496

Let me explain the code. Apl works from right to left 10000000 p 20 creates 10 million 20 's. The each symbol ${ }^{\text {. }}$ calls the unnamed program between the \{\} 10 million times passing it one 20 each time assigning the 20 to the symbol $\omega .4 ? 20$ finds 4 different random numbers between 1 and 20 . Then the 12ϵ sees if each of the numbers $1 \& 2$ is a member of the set of 4 random numbers. If it is it returns a 1 otherwise it returns a 0 . I have chosen 1 and 2 as the id numbers for the twins so if there is a 1 and a 2 in the 4 numbers it means the twins are together in the first group. If it returns a 10 or 01 it means only one of the twins was in the group. If 00 it means neither of the twins was in the group. Finally match \equiv compares the two numbers to see if they match it's left argument of 1. If they match a 1 is returned otherwise a 0 is returned. So after the program inside the $\}$ runs 10 million times we have a string of 1 's and 0 's which are averaged by the avg program to see the proportion of times the twins are both in the first group. If we had looked at 5 groups of 4
people each time we would have found 5 times more matches so I multiplied this number by 5 to get the expected percentage of times the twins would have been in one of the 5 groups.
As you can see I cheated a little as the above example only looks at 1 of the 5 groups and then multiplies the average by 5 to get Monte Carlo estimate. So I am really doing 5 times less computation. If I change to 50 million instead of 10 million I get a workspace full error on my computer. The APL program does the data as a vector instead of looping around and around as Matlab does and thus requires all the memory at one time. So to be fair I did 10 million runs 5 times to get my 50 million here which is equivalent to the 10 million Matlab example. So here it is:

$5 \times \operatorname{avg}\left\{a v g\{11 \equiv 12 \epsilon 4 ? \omega\}{ }^{*} 10000000 \rho \omega\right\}{ }^{*} 5 \rho 20$

0.1579035

I used this to compute the average avg $\leftarrow+\neq \dagger \neq$) . For example: avg 456 is sum of numbers ($\omega=456$ and $++\omega=18$) divided \div by number of numbers ($w=456$ and $\neq \omega=3$), which is simply the sum of the numbers +f divided \div by number of numbers $\not \equiv$. Thus $18 \div 3=6$ the average.
Here is another run with the apl program to compute the average included in the one line APL program. It also shows that 50 million runs is probably enough to get a pretty good estimates of the theoretical number of . 1579. Try APL yourself my website jerrymbrennan.com

```
avg\leftarrow(+f \div # ) \diamond 5xavg{avg{1 1\equiv1 2\epsilon4?\omega}*"100000000\rho\omega}* 5\rho20
```

0.1579821

With APL there are a number of somewhat similar ways to compute this percentage. Below are 4 different ways compared to see which is fastest using a builtin timer program Jruntime with 4 input strings of the 4 different methods. It looks like the above method tested first below using membership \in is not the fastest though the fourth method using union n only takes 5% less time. Reduction $\wedge /$ and Plus Reduction $+/$ both seem to take a bit longer.
Now below is a long one line APL call to util program Jruntime passing it the 4 method \& below that are 4 result times compared:

Now go to JMB.APLCloud.com where you can try all the APL examples or any other APL you want. There's also my 60 page pdf manual with many more examples \& many online tutorial, videos teaching APL, complete interactive statistics package, links to getting educational APL free and 800 page free download pdf APL manual. If questions please email me Jerry M Brennan PhD at jbrennan@hawaii.rr.com or go to my website at jerrymbrennan.com

Generate Numbers 1-10 From Digits 1-4 Using APL Symbols ****

Your assignment is to find APL symbols that operate on vector: $a \leftarrow z 4$ and find a set of symbols that will generate each of the numbers 1-10 with the fewest characters. For example: a[1] or 1כa would both work to generate 1. The second one is preferred as it uses less characters(3 instead of 4).
HERE IS A PROGRAM I WROTE TO SCORE YOUR RESULTS.

```
ScoreNumbers\leftarrow{ ค \omega rt arg is your trys ie '1\uparrowa' '-/\phia' etc
\alpha\leftarrow(\imath10)(\imath4) A default left arg is answers & #'s to use
ans }1>\alpha\otimes a\leftarrow2\supset\alpha ค answers & "a" values to use to get answer
avg+{(+/\omega)\div\rho\omega} ค define average fns
try\leftarrow,"(\rhoans)\uparrow\omega,500\rhoc'-99' ^ expand your trys to = the length of ans
try&(-1+tryz"'\rho')\uparrow"try \rho elim comments on lines
r&c'1=right 0=wrong: ',\Phiscore\leftarrowد"ans=\Phi"try
r,*c'Lengths of each: ',ФЈ"\rho"try
r,*c'# and % correct: ',(øn),7 2ゅ100\times(n\leftarrow+/score)\divpscore
r,*c'Correct avg len: ',\Phiavgo`\rho"score/try
\daggerr
A ans for: (\imath20)(\imath4) ScoreNumbers one2four [#'s 1-20 using 1-4]
A ans for: (0, 220)(404) ScoreNumbers fourfour [#'s 0-20 using 4 4 4 4]
```

\}

So if you had 3 answers done you could score it like this:

EXTRA CREDIT 1: Find the numbers 1-20. Change ScoreNumbers default left argument in line1 to (20)(24) like this: (20) (24) ScoreNumbers Mytries Note also the 0 's to fill unknowns if you are not sure of some of them.

```
    Mytries\leftarrow'1\uparrowa' '-/\phia' 'a[3]' '0' '0' '0' '0' '0' '0' '0' '0' 'x/2\downarrowa'
    (\imath20)(\imath4) ScoreNumbers Mytries
1=right 0=wrong: 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Lengths of each: 3 4 4 0 0 0 0 0 0 0 0 5 3 3 3 3 3 3 3 3
# and % correct: 4 20
    3 4 5
Correct avg len: 4 A my correct solution for \imath20 was 7.7. can you beat it?
EXTRA CREDIT 2: Use as you input 4 4's & find numbers 0-20. You must use
all 4 4's to get each number. Here's my answers(hidden in variable X). Can
you beat it?
(0,r20)(404) ScoreNumbers X
1=right 0=wrong: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Length of each:11 111 13 11 15 16 14 13 6 13 17 13 13 12 111 13 3 13 15 24 13
# and % correct: 21 100
11 11 13 11 15 16 14 13 6 13 17 13 13 12 11 13 3 13 15 24 13
Correct avg len: 12.85714286
```

GENERATE NUMBERS－SOME ANSWERS FOR：1－20 USING 24 AND 404
Possible answers for ：First find \＃＇s 1－20 using $a \leftarrow 24$（1 2344 ） （ı20）（ı4）ScoreNumbers one2four \AA use some or all digits repeats allowed

1†a	1
23a	2
3＞a	3
3 ${ }^{\text {a }}$	4
＋／a［14］	5
！／a	6
＋／2 \downarrow a	7
\times / a［ 2 4］	8
＊／1 \downarrow ¢ ${ }^{\text {a }}$	9
＋／a	ค 10
（x／a［3 4］）－1＞a	ค 11
\times / a［3 4］	ค 12
a［1］＋x／a［3 4］	ค 13
$a[2] \times+/ 2 \downarrow \mathrm{a}$	14
a ［3］＋x／2 $\mathrm{a}^{\text {a }}$	A 15
（43a）＊2	ค 16
$a[1]+(4>a) * 2$	ค 17
a［3］××／a［2 3］	ค 18
（＊／a）+a ［2］\times＊／1 \downarrow ¢ ${ }^{\text {a }}$	ค 19
＋／2／a	ค 20

Lengths of each： 333383586314813101071213175 avg＝7．7
Possible answers for ：Now find \＃＇s $0-20$ using $a \leftarrow 404$（4 444 ） （ 0,220 ）（404）ScoreNumbers fourfour \quad ค note：You must use every 4 once．

＋／（2ヶa）－2 ${ }^{\text {da }}$	0
$\times /(2 \uparrow a) \div 2 \downarrow a$	1
$(\div / 2 \uparrow a)+\div / 2 \downarrow a$	2
$(+/ 3 \uparrow a) \div 3 \downarrow a$	3
$a[1]+a[2] \times-/ 2 \downarrow a$	4
（ a ［3］＋x／2ヶa）$\div 3 \downarrow \mathrm{a}$	5
$(+/!2 \uparrow a) \div+/ 2 \downarrow a$	ค 6
（＋／2ヶa）－$+/ 2 \downarrow \mathrm{a}$	ค 7
－／$\phi+\backslash \mathrm{a}$	8
（ $\% / 2 \uparrow a)++/ 2 \downarrow a$	9
＋／a［1］＋a［2 3］+4 a	
（＋／3ヶa）－L®3ła	ค 11
（ \times／2ヶa）－L／2 ${ }^{\text {a }}$	A 12
（＋／3ヶa）+ L－4	A 13
（＋／3ヶa）+ － 4	ค 14
（ $\times / 2 \uparrow a$ ）$-\div / 2 \downarrow a$	ค 15
＋／a	ค 16
（ $\times / 2 \uparrow a$ ）+ \％$/ 2 \downarrow a$	ค 17
	ค 18
	A 19
（ $\times / 2 \uparrow a$ ）+ ／2 $2 \downarrow$ a	A 20

Lens：11 11131115161413613171313121113313152413 avg＝12．8
By Jerry Brennan
Page 55 of 68

WORKING WITH TABLES **

Company wants to compare actual \& forecasts for 4 products for 6 months.
Forecast $446 p 150200100808080300330360400500520100250350$ 38040045050120220300320350 ค Forecast reshape(p) to 4×6 table

Actual $446 p 141188111878274321306352403497507118283397$ 4244114094391187306318363 A Actual reshape(p) to 4×6 table

Forecast
$\begin{array}{rrrrrr}150 & 200 & 100 & 80 & 80 & 80 \\ 300 & 330 & 360 & 400 & 500 & 520 \\ 100 & 250 & 350 & 380 & 400 & 450 \\ 50 & 120 & 220 & 300 & 320 & 350\end{array}$
Actual
$\begin{array}{llllll}141 & 188 & 111 & 87 & 82 & 74\end{array}$
$\begin{array}{llllll}321 & 306 & 352 & 403 & 497 & 507\end{array}$
$\begin{array}{llllll}118 & 283 & 397 & 424 & 411409\end{array}$
$\begin{array}{llllll}43 & 91 & 187 & 306 & 318 & 363\end{array}$

Forecast-Actual					
9	12	-11	-7	-2	
-21	24	8	-3	3	
-18	-33	-47	-44	-11	
7	29	33	-6	2	

Forecast, "Actual											
150	141	200	188	100	111	80	7	80	82	80	74
300	321	330	306	360	352	400	403	500	497	520	507
100	118	250	283	350	397	380	424	400	411	450	409
50	43	120	91	220	187	300	306	320	318	350	363

					, "A	al		col	is	wide	with	0 decimals
150	141	200	188	100	111	80	87	80	82	80	74	
300	321	330	306	360	352	400	403	500	497	520	507	
100	118	250	283	350	397	380	424	400	411	450	409	
50	43	120	91	220	187	300	306	320	318	350	363	

150	141	9	200	188	12	100	111	-11	80	87	-7	80	82	-2	80	74	6
300	321	-21	330	306	24	360	352	8	400	403	-3	500	497	3	520	507	13
100	118	-18	250	283	-33	350	397	47	380	424	-44	400	411	-11	450	409	41
50	43	7	120	91	29	220	187	33	300	306	-6	320	318	2	350	363	13

Plotting Regular Polygons **

```
R&PolyPlot(n s);y;x;y;foot;range;x0;y0;Deg2Rad;theta;i;radius;py;px;pct;area;apothem
    A n is # sides s=side length. So: PolyPlot 5 10 plots 5 sided polygon with each side=10
    Deg2Rad}\leftarrow{\omega\times01\div180} A fns to convert degrees to radians for input to trigonometric fn
    radius <s }\div2\times10Deg2Rad 180\div
    a center to a vertex 10 is sine
    apothem*s\div2\times30Deg2Rad 180\divn
    area\leftarrow(n\timess*2)\div4\times30Deg2Rad 180\divn
    Q center to midpt side 3o is tangent
    A area of polygon 30 is tangent
    x0\leftarrowy0<0 R x y location of center of polygon on plot
    A see http://www.mathopenref.com/polygonregulararea.html for following formulas
    theta\leftarrow(360\divn) xi\leftarrow0,(\imathn-1),0 n theta is angle with the x axis plot based on # of sides (n)
    x < x 0 +radius < 20Deg2Rad theta+ix(2\times01)\divn \rho x vertice locations 20 is cosine
    y<y0+radius\times10Deg2Rad theta+ix(2\times01)\divn \rho y vertice locations 10 is sine
    ch.New 350 350 a trying to make x y lengths the same but failing
    ch.Set'Head'((øn),' Sided Polygon - side length is ',\Phis)
    ch.Set'Footer'(('Perimeter=',\Phin\timess),(' Radius=',\Phi4कradius),(' Apothem=', क4\varnothingароthem),('
Area=',\Phi4\Phiarea))
    ch.Set"(c"'Xrange' 'Yrange'),"range\leftarrowc-1 1\times「/|x,y
    ch.Set"('Xint' O)('Yint' O)('forcezero')('XYPLOT,GRID')
    ch.Set'style' 'surface'
    ch.Plot申\uparrowx y
    PG+ch.Close
R\leftarrow'View PG A to see it'
```

PolyPlot 310
View PG a to see it
3 Sided Polygon - side length is 10

PolyPlot 710

View PG A to see it
7 Sided Polygon - side length is 10

Plotting Any Triangle Given Some Sides \& Angles

MiServer

Anyone who can write an APL function should be able to host it on the web. ${ }^{\text {tm }}$

Solve and Plot Any Triangle Using Only 3 Pieces of Side/Angle Information

Enter 3 bits of Triangle Information in white window below and then click the correct button.
S stands for a Side and A stands for an Angle. So if you had 3 sides of a triangle such as: 345
If you
in the white window and press the SSA button to see plot and results for the two possible triangles.
345 SSS SSA SAS ASA AAS AAA

MiServer

Anyone who can write an APL function should be able to host it on the web. ${ }^{\mathrm{mm}}$

Solve and Plot Any Triangle Using Only 3 Pieces of Side/Angle Information

Enter 3 bits of Triangle Information in white window below and then click the correct button.
S stands for a Side and A stands for an Angle. So if you had 3 sides of a triangle such as: 345
you would type the 345 in the white window and press the SSS button to see all results and plot.
If you had 2 sides and then the next angle after the 2 nd side such as:4 530 you would type in 4530
in the white window and press the SSA button to see plot and results for the two possible triangles.
4530 SSS SSA SAS ASA AAS AAA


```
:Class Triangles : MiPage
    :Include #.HTMLInput
    :Field Public Input+'' A Neme of edit field for uger to input data(gideg and angleg)
    :Field Public Action+' A All sction buttong have thig name but diff labels like SSS S5A etc
    7 Render req:html
    :Access Public
    DoAction
A If a button wes pressed, desl with it in DoAction fns
    html+'h2'Enclose'Solve and Plot Any Triangle Using Only s Pieces of Side/Angle Information' A display a hesdline
    html.+'*br/xEnter 3 bits of Triengle Information in white window below end then click the correct button.
    html.+'<br/>5 stands for a Side and A stands for an Angle. So if you had 3 sides of a triangle such as: 3 4 5'
    html.+'*br/xyou would type the 3 4 5 in the white window and press the SSS button to see all results and plot.
    html,+'<br/*If you had 2 gideg and then the next ongle ofter the 2nd aide such as:4 5 30 you would type in 4 5 30'
    html,+'*br/>in the white window and press the S5A button to see plot and results for the two possible triangles.'
    html.+'*br/*<br/>'. 'Input'Edit Input A An "Edit" called "Input" containing the Input
    html.+'Action'Submit'S55' A define buttons for Sides and Angle inputg S5S means input 3 sides
    html.+'Action'Submit'SSA' A SSA means Side Side Angle
    html,+'Action'Submit'SAS'
    html.+'Action'Submit'ASA'
    html.+'Action'Submit'AAS'
    html,+'Action'Submit'AAA'
    html,+'*br/*<br/x'.'*b*',ErrMag.'</b*' A sdd Error message if unable to plot with resson why
    html+req('post'Form)html A Put a 'submit' form around all text
    html+html,GraphHtml A sdd Graph(if unsble to plot GraphHtml wes set to '
    req.Return html
\nabla
D DoAction;file:chk A if button pressed check input & try to do plot
    ErrMag+GraphHtml+'' A init graph and error to nothing
    :Select Action
    :Caselist 'AAA' 'AAS' 'ASA' 'SAS' 'SSA' 'SSS' A list of buttons that might have been preseed
            chk+1=ПVFI Input A check input to make sure it is 3 non-negetive numbers
            :If 3m+/chk O ErrMag+'You must enter 3 numbers.
            :ElseIf 1m^/chk O ErrMag+'You must enter only numbers.
            :ElseIf v/'--'EInput o ErrMsg+'Negstive numbers not allowed.'
            :Els
                A call program using Button label: TriSSS or TriAAS etc using user Input
                    GraphHtml+=,/{'svg'\equiv-3\uparroww:'kembed width="400" height="400" gro="/',w.'" type="image/gvg+xml" /x' o ''}"file
                ErrMag+=./{'svg'\equiv-3+w:'' OAction,': ',enlistr"m}'file
            :EndIf
            Action+'. A reset sction to nothing
        EndSelect
\nabla
7 z+RainProIn z A workeround for no result commend below not sccepted in dfn
    ( t'ch' 'Post5crp' 'svg')DCY'rsinpro' A Bring in rsimpro if using MiServer
\nabla
    TriPlot555+{a+s, /'side lengths: s=' ' b=' ' c='," "*
        'J' emw:'INVALID A (imaginary side length(side with J in it:',\pia
    maxz(+/w)-max+[/w:'INVALID A (longest side)z(sum other 2 sides):',vo
    xy+f(0 0) (\omega[1]0)(xy+C \omega) A \Deltacoords:A(0,0) B(a,0) C(from xy+C fng)
        z+RainProIn 0 A Use if MiServer (ie Web page)
        z+ch.Set'Hesd'(Action,' Triangle Plot:abc=sides & ABC=angles')
        z+ch.Set'ffont' 'Ar.12,blue'
        z+ch.Set'Footer'a
        cop+'side a: horizontal. Angles at:' A label line
```



```
        z+ch.5et"('xcep'cop)('ycop' 'Y exis')
        z+ch.Set'style' 'XYPLOT,GRID,Lines,markers,filled' A set up plot
        z+ch.SetMarkers'Bullet' A bullet symbol from ch.\Deltamarkers
        z+ch.5et'Xrange'(ran+(L/,xy)([/,xy)) A min & max for plots
        z+ch.Set'Yrange'ren A same x 8 y so it looks good
        z+ch.Plot xy A plot triangle
        A PG+#.ch.Close A sove plot (Use if no Miserver)
        A #.View PG A show plot (Use if no Miserver)
        A (Use below 4 lines if MiServer)
        (tn file)+'svg'#.Files.CresteTemp req.Server.TempFolder
        z+file svg.PS ch.Close
        file+(preq.Server.Root) &file A Make relative file neme
        file
    }
```

NOTES FOR ALL TRIANGLE EQUATIONS AND APL SOLUTIONS
SYMBOLS USED: (http://www.mathsisfun.com/algebra/trig-solving-practice.html)
$A \quad B C$ are angles in degrees and a b c are side lengths opposite those angles. Ar Br Cr are angles in radians which APL often uses. o1 is pi(m) in APL. A radian is a way of expressing an angle in terms of a circle’s radius.
1 Radian $=180^{\circ} \div \pi$. or about 57.2958 degrees $(180 \div 3.141592654) \& 57.29581 \times \pi=180$ degrees
PRELIMINARY FORMULAS as programs:

1) Triangle Angles Add to 180 degrees:

If we have 2 angles we can get the 3rd because their sum=180.
$A+B+C=180$ degrees so in $A P L C+180-A+B$ or $B+180-A+C$ or $C+180-A+B$
2)Law of Sines:

So if we have couple of angles and a side or a couple of sides and an angle we can find other side. (ie if we have A and a and B we can determine b) $(a \div \sin A)=(b \div \sin B)=(c \div \sin C)$ or reciprocals: ((sin $A) \div a)=((\sin B) \div b)=((\sin C) \div c)$
3)Law of Cosines:
($c * 2$) $=(a * 2)+(b * 2)$ for right triangle
$(c * 2)=(a * 2)+(b * 2)-2 \times a \times b \times c o s C$ for any triangle C in degrees
4)Area of a triangle:
area $+x / 0.5 \mathrm{a} b(\sin C)$ ค or for a right triangle $C=90^{\circ} \& \sin 90=1$ so area $=.5 \times a \times b \times 1$
So with these 4 basic formulas we can solve all triangle problems
here are 7 functions that solve all possible triangle problems: a=angle S=side TriAA TriAAA TriAAS TriASA TriSAS TriSSA TriSSS

EXAMPLE USAGE: capitals $A B C$ are angles. Small letters a b c are side lengths If a triangle had 3 sides: $3,4,5$ do this:

TriSSS 345 ค Type in 3 sides $(3,4,5) \&$ get all angles \& area info back.
Triangle Plot:abc=side lengths \& ABC=angles

a b c=345 A B C=36.869953.130190 area=6

If a triangle had 2 angles and a side 10 degrees 15 degrees and side 8.5 do this:
TriAAS 10158.5
Triangle Plot:abc=side lengths \& ABC=angles

$a b c=12.669120 .6878 .5$ A B C= 1515510 area= 22.7553
If a triangle had an angle 10, then a side 8.5 and then an angle 15 do this: TriASA 108.515
Triangle Plot:abc=side lengths \& ABC=angles

a b c= 3.49255 .20568 .5 A B C= 1015155 area= $=3.8417$
TriSAS 3904
A this is right triangle so $a * 2+b * 2=c * 2$
Triangle Plot:abc=side lengths \& ABC=angles

$a b c=345$ A B C= 36.869953 .130190 area $=6$
By Jerry M Brennan
ρ area is $(a \times b) \div 2$
Page 61 of 68

TriSSA 3437 ค there are two possible solutions for this problem

Triangle Plot: abc=side lengths \& ABC=angles

Triangle Plot:abc=side lengths \& ABC=angles

$a b c=344.9848$ A B C $=3753.361889 .6382$ area= 5.9999 [Alt 1] $\quad a b c=341.4043$ A B C= $=37126.638216 .3618$ area= 1.6902 [Alt 2]
There are a number of triangles which are impossible, angles cannot sum to more than 180 degrees \& one side cannot be longer than the sum of the other two sides.

```
    TriAAS 100 95 8.5
INVALID \Delta 2 input angles sum\geq180: 100 95
```

TriSSS 348 ค impossible triangle c>a+b
INVALID Δ (longest side) \geq (sum other 2 sides) :a b c= 348
Finally some combinations of angles and sides are not possible as indicated in the example below where TriSSA finds imaginary numbers noted in APL with J. TriSAS 3904 is the 345 right triangle, but TriSSA 3490 is impossible in two different ways as is show below.

TriSSA 3490 ค many other combs/orders of angles \& sides are also invalid. INVALID Δ (imaginary side length(side with J in it:a $\mathrm{b}=340 \mathrm{~J}=3.6458 \mathrm{~A} \mathrm{~B}$ C= 90 90J-45.5711 0J45.5711 area= 0J5.2915 [Alt 1]
INVALID Δ (imaginary side length(side with J in it:a $\mathrm{b} \mathrm{c}=340 \mathrm{~J}^{-2} 2.6458 \mathrm{~A} \mathrm{~B} \mathrm{C}=90$ 90J45.5711 0J-45.5711 area= $0 \mathrm{~J}^{-} 5.2915$ [Alt 2]

HERE ARE THE ACTUAL FUNCTIONS:

TriAA $+\left\{\begin{array}{l}\text { Triangle } \\ \text { info } \\ \text { given AngleAngle }\end{array}\right.$
$C+180-+/ A \quad B+\omega$ a input: 2 angles $A B$
in $+(C<0) / ' I N V A L I D \Delta 2$ input angles sum $\geq 180: '$
in,'A B C=',A,B,C,'a b c area=Need at least 1 side to do more'\}
TriAAA $-\left\{\begin{array}{l}\text { Triangle } \\ \text { info } \\ \text { given AngleAngleAngle }\end{array}\right.$
in $+(180 \neq+/ \omega) / ' I N V A L I D \Delta 3$ input angles not equal to 180:'
in,'A B C=', ω,'a b c area=Need at least 1 side to do more'\}
TriAAS $\leftarrow\left\{\begin{array}{l}\text { Triangle info given Angle Angle Side }\end{array}\right.$
$C A \quad c \leftarrow \omega$ ค $A C=a n g l e s c=s i d e ~ o p p o s i t e ~ a n g l e ~ C ~$
$B+180-+/ A C \quad A$ missing angle $B=180-(A+C)$
$B<0$:'INVALID $\Delta 2$ input angles sum 180 :', C, A
a law of sines is $(a \div \sin A)=(b \div \sin B)=(c \div s i n e C)$
$a \leftarrow(c \times s i n A) \div \sin C \quad A$ solve law of sines for a
$b+(c x s i n B) \div \sin C \quad A$ solve law of sines for b
area+x/0.5 a b(sin C) A . $5 \times b a s e x h t ~[h t=b x s i n ~ C] ~$
('a b c=',(4 round a b c),'A B C=',(4 round A B C),' area=',4 round
area)TriPlotSSS a b c\}
TriASA $-\left\{\begin{array}{l}\text { Triangle } \\ \text { info given AngleSideAngle }\end{array}\right.$
$A \quad c \quad B+\omega$ ค $A C=a n g l e s \quad c=s i d e ~ o p p o s i t e ~ a n g l e ~ C ~$
$C+180-+$ /A B \quad a missing angle $C=180-(A+B)$
$C<0$:'INVALID $\Delta 2$ input angles sum $\geq 180:^{\prime}, A, B$
By Jerry M Brennan
Page 62 of 68

A recall law of sines: (a $\div \sin A)=(b \div \sin B)=(c \div \operatorname{sine} C)$
$a \leftarrow(c \times s i n A) \div \sin C \quad A$ solve sine law for a using C
$b \leftarrow(c \times s i n B) \div \sin C \quad A$ solve sine law for b using C
area $<x / 0.5$ a b(sin C) A. $5 \times b$ basexht [ht=bxsin C]
('a b c=',(4 round a b c),'A B C=',(4 round A B C),' area=', 4 round
area)TriPlotSSS a b c\}
TriSAS $<$ \{ ρ Triangle info given SideAngleSide
a $C b \leftarrow \omega \quad A \quad a=s i d e 1 C=a n g l e ~ b e t w e e n ~ b=s i d e 2$
$c \leftarrow 0.5 * \ddot{\sim}(+/ a b * 2)-(x / 2 a b) \times \cos C$ a $c=s q r t(a 2+b 2-2 a b \times \cos C$
ค Note: Law of sines (sin $A / a)=(\sin B / b)=(s i n C / c)$
SinAr \leftarrow (axsin $C) \div c \quad a$ solve sine law for sine $A(i n$ radians)
$A+a r c s i n$ SinAr $\quad A$ convert sine A in radian to angle in deg
$B+180-+/ A C \quad \rho$ missing angle $B=180-(A+C)$
area $<x / 0.5$ a b(sin C) A. $5 \times b a s e \times h t$ [ht=bxsin C]
('a b c=',(4 round a b c),'A B C=',(4 round A B C),' area=',4 round
area)TriPlotSSS a b c\}
TriSSA $\{\alpha<0$ a Triangle info given SideSideAngle. There are 2 possible triangles
$a \operatorname{b} A+\omega$ ค a=side opposite angle $A \quad b=s i d e ~ \rho ~ N o t e: ~ t h i s ~ p r o g r a m ~ r u n s ~ t w i c e ~$
Ar \rightarrow DegToRad A \quad A convert A to radians
a recall law of sines is : (a \div sin $A r)=(b \div \sin B r)=(c \div \sin C r)$
A solve law of sines for sin $b: \sin b=(b \times s i n a) \div a$
SinBr↔(bxsin $A) \div a \quad \rho$ solve sine law for sin of $B(i n$ radians)
B tarcsin SinBr $\quad A$ convert sine of $B r$ in radians to B in degrees
$B \leftarrow(\alpha+1) \supset B, 180-B \quad$ a pick $B(\alpha=0)$ or $180-B(\alpha=1)$ for 2 possible b angles
$C+180-+$ /A B \quad ค \quad a missing angle $C=180-(A+B)$
$c \leftarrow(b \times s i n C) \div \sin B \quad a \quad$ solve law of sin's for $c=(b \times s i n C) \div \sin B$
area $+x / 0.5$ a $b(\sin C) ~ ค .5 \times b a s e x h t ~[h t=b x s i n C]$
$\square+(' a b c=',(4$ round $a b c), ' A B C=',(4$ round $A B C), ' a r e a='$, (4 round
area),'[Alt ',($\alpha+1$),']')TriPlotSSS a b c
$\alpha=0: 1 \nabla \omega\} \quad \rho$ call TriSSA (∇) again with same inputs (ω) but $\alpha=1$ picks 180-B\}
TriSSS $-\left\{\rho_{\text {Triangle }}\right.$ solution given 3 sides
a b $c \leftarrow \omega \quad$ ค input: 3 sides
A note:arcoosine=-20 It converts cosine to angle in radians
a recall cosine fns is: $(a * 2)=(b * 2)+(c * 2)-2 \times b \times c \times c o s i n e ~ A r ~$
$A+\arccos ((+/(b c) * 2)-a * 2) \div x / 2 b c$ a Cosine function solved for A
$B+\arccos ((+/(c a) * 2)-b * 2) \div x / 2$ c a \AA Cosine function solved for B
$C+180-+/ A B \quad$ a missing angle $C=180-(A+B)$
area $+x / 0.5 \mathrm{~b} c(\sin A) \quad \rho .5 \times b a s e x h t$ [ht=cxsin A]
('a b c=',(4 round a b c),'A B C=', (4 round A B C),' area=', 4 round
area)TriPlotSSS a b c\}

Bingo

Imagine 5×5 Bingo game where Bingo numbers are determined by simple math(2 numbers added, subtracted, multiplied or divided). For example the caller might say " 2 times 4 " and $i f$ you had an 8 on your board you would put an X over the 8. What would be the best numbers(1-50 no duplicates) for you to place on your board? Well add and subtract are unbiased but for multiply and divide some numbers have more factors and thus will occur more often. Lets find best numbers to put on your board so you can win the Bingo game.

```
factors}\leftarrow{(r=Lr\leftarrow\omega\divn)/n\leftarrowzL\omega\div2} \rho fns to find all factors for a number.
factors 30 & call fns factors passing 30 into the program(\omega)
```


123561015 ค these are the factors of 30

Let me explain the above factors program from right to left. W which is 30 is $\div 2$ (since no factor can be greater than $1 / 2$ the number). L rounds the number down if it is a decimal and 2 makes the numbers from 1-15 and stores them in $n . r$ is $\omega(30) \div e a c h n(n u m b e r s 1-15)$. Lrounds the results (r) down and $=$ compares each r to it's rounded r. If $r=L r$ the division must have come out even and thus n must be a factor. The expression inside the () will be 151 's and 0 's showing which values of n are factors of 30. The syntax (r=lr)/n selects only n's which have 1's. Here $30 \div 123$... 15 has even results for 123561015 which are the factors for 30.

Now lets find all factors for each(") number 1-50(50). Then catenate(,) factors with each(") of the numbers and make a table($\phi \uparrow$) for viewing.

$\phi \uparrow(250)$, ${ }^{\text {factors }}$ • 250											P24	row			1 i			the			\#,		other				rows			are			the		factors		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23		25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	2	0	2	0	2	3	2	0	2	0	2	3	2	0	2	0	2	3	2	0	2	5	2	3	2	0	2	0	2	3	2	5	2	0	2	3	2	0	2	0	2	3	2	0	2	7	2
0	0	0	0	0	3	0	4	0	5	0	3	0	7	5	4	0	3	0	4	7	11	0	3	0	13	9	4	0	3	0	4	11	17	7	3	0	19	13	4	0	3	0	4	5	23	0	3	0	5
0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	8	0	6	0	5	0	0	0	4	0	0	0	7	0	5	0	8	0	0	0	4	0	0	0	5	0	6	0	11	9	0	0	4	0	10
0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	0	9	0	10	0	0	0	6	0	0	0	14	0	6	0	16	0	0	0	6	0	0	0	8	0	7	0	22	15	0	0	6	0	25
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	0	10	0	0	0	0	0	9	0	0	0	10	0	14	0	0	0	0	0	8	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	15	0	0	0	0	0	12	0	0	0	20	0	21	0	0	0	0	0	12	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	18	0	0	0	0	0	0	0	0	0	0	0	16	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	24	0	0

Looking at the table we can see that 48 has the most factors and odd numbers generally are much poorer than even numbers. Now lets put these results in order by the number of factors(ρ). First lets get counts:

```
+m*\phi\uparrow(\imath50),"\rho"factors"\imath50 \rho row 1 is the #, row 2 is the # of factors
```


$m[; \boldsymbol{p m}[2 ;]]$ a Descending Sort($\boldsymbol{\phi}$) using row 2 of m to sort m

In the above m is a matrix with 2 rows and 50 columns. m[rows;columns]. So中m[2;] takes row 2 values of matrix \& determines their reverse sort order.

so highest value is col 48 which is in this case 48 . Worst value is in column 1 which is 1 . So now you can pick best values for your Bingo game easily. I would suggest putting best values all in same row or column. So your first row or column might be 4836243040 and next row/column might then be 4212182028 etc. These would have highest odds of winning. Now verify by testing if this is correct. Here's fns that makes 3 different Bingo cards(numbers with fewest, random or most factors) and then evaluates them with random product numbers and sees which card wins(5 in row).

```
res+Bingo ss;FactorCalc;facts;boardL;boardM;boardR;calls;prods;RCMAX;n;z;bL;bR;bM
\rho Evaluate 5\times5 Bingo games with boards #'s 4-50 constructed in 3 ways:
A 1)Least factors, 2)Most factors 3)Random #'s
月 show steps ss=( 0:no 1:partial 2: play mode-full details and pause at each step)
A use: +/5=\varnothing" }1000\rhoc'Bingo 0' to test program 1000 times and show winner board
A Bingo calls are determined by multiplying 2 random numbers 2-25
    FactorCalc\leftarrow{(r=Lr\leftarrow\omega\divnums)/nums }\leftarrow2L\omega\div2} & fns to determine factor
    facts*د,/\rho"FactorCalc`3+\imath47 R get factors for #'s 1-50
    boardL&5 5p3+4facts & 1)board with #'s with least factors (sort up)
```

```
boardM*5 5o3+巾facts
    ^ 2)board with #'s with most factors (sort down)
boardR&5 5p3+25?47 & 3)board with #'s random(?) 4-50 no duplicates
\rho n unique(u) product(x/*) #'s <50 from 5000 random(?) pairs of #'s (2-25)
```



```
calls+calls[prodsiuprods] & prods\leftarrowuprods a keep only calls with unique(u) products
RCMAX }\leftarrow{(\Gamma/+/\omega)\Gamma(\Gamma/++\omega)} \rho fns:Row Col MAX: \omega is input i.e. 5\times5 board
\rho fns gets largest([/) rowsum(+/) or colsum(+f)
:For n :In \imath\rhocalls A loop :For each call:count each boards matches
    res&RCMAX*(bL bR bM&boardL boardR boardM\epsilon"cn\uparrowprods) a score each board for trial
    :If ss>0 \diamond ' Least=' ' Random=' ' Most=' 'Hits for Trial=' '#=',"res,n,calls[n]
    :EndIf
    :If ss>1
        \square<'Enter to see trial results or b:see full boards or q:quit ' & z+ 1 &D \rho ask&wait
        '|',"bL bR bM\timesboardL boardR boardM a show scored boards each step if ss>1
            :If z\equiv,'b'
                Least Factors Random# Factors Most Factors' \diamond '|',"boardL boardR boardM
            :ElseIf z\equiv,'q' \diamond ->0 A exit(go to zero) if response is "q"
            :EndIf
        :EndIf
        ->Oxz5\epsilonres \rho exit(go to zero) if any board wins:row/col sum matches(\epsilon) a 5 \rho to Play through
:EndFor
```

Now lets play Bingo by trying the Bingo fns a couple times.

```
    Bingo 1
Least= 0 Random= 1 Most= 1 Hits for Trial= 1 #=2 8
Least= 1 Random= 1 Most= 1 Hits for Trial= 2 #=2 3
Least= 1 Random= 1 Most= 1 Hits for Trial= 3 #=2 17
Least= 1 Random= 1 Most= 2 Hits for Trial= 4 #=11 4
Least= 1 Random= 2 Most= 2 Hits for Trial= 5 #=4 3
Least= 1 Random= 2 Most= 2 Hits for Trial= 6 #=3 16
Least= 1 Random= 2 Most= 2 Hits for Trial= 7 #=13 2
Least= 1 Random= 2 Most= 3 Hits for Trial= 8 #=9 4
Least= 1 Random= 2 Most= 3 Hits for Trial= 9 #=6 4
Least= 1 Random= 2 Most= 3 Hits for Trial= 10 #=3 7
Least= 1 Random= 2 Most= 4 Hits for Trial= 11 #=4 8
Least= 1 Random= 2 Most= 5 Hits for Trial= 12 #=2 21
125
```

```
Bingo 1
Least= O Random= 0 Most= 1 its for Trial= 1 #= 3 7
Least= 0 Random= 0 Most= 1 its for Trial= 2 #= 2 20
Least= O Random= 0 Most= 2 its for Trial= 3 #= 18 2
Least= 0 Random= 1 Most= 2 its for Trial= 4 #= 4 11
Least= 1 Random= 1 Most= 2 its for Trial= 5 #= 2 2
Least= 1 Random= 1 Most= 3 its for Trial= 6 #= 8 3
Least= 1 Random= 1 Most= 3 its for Trial= 7 #= 2 16
Least= 1 Random= 1 Most= 4 its for Trial= 8 #= 3 16
Least= 1 Random= 1 Most= 4 its for Trial= 9 #= 2 8
Least= 1 Random= 1 Most= 4 its for Trial= 10 #= 19 2
Least=1 Random= 1 Most= 5 Hits for Trial= 11 #= 5 6
```

115

As you can see the board using numbers with the Most factors won both times. I tested this 1000 calls: +/5= ${ }^{\circ} 1000 \rho c^{\prime}$ Bingo 0^{\prime} and got:11 61 952. So Most wins (or ties) $95.2 \%(952 \div 1000)$ of the time.

In the game originally described not all calls are made from multiplication. Some were also made from addition, subtraction and division. Addition would have bias towards larger numbers while subtraction would have bias towards smaller numbers but overall advantage for boards with more factors would be smaller. What is the bias for division?

If you call the program like this:

Bingo 2

It will play in an interactive mode where you can watch each of 3 boards be scored at each step.

Writing Web page using APL Using Mildserver

An APL Class is created called Reverse. Automatic Code(MiPage \& HTMLInput) is included which does most of the work creating webpage \& converting APL to HTML in the Render fns. DoAction fns checks which Action button was pressed Clear or Reverse \& does what Submit Caption says: If 'Reverse' letters in Name reversed Name $\leftarrow \boldsymbol{\phi}$ Name. If 'Clear' Name set to null Name↔', .

MiServer: click orange see APL

Anyone who can write APL should be able to host it on the web. ${ }^{\mathrm{TM}}$

Home

```
:Class Reverse : MiPage
    :Include #.HTMLInput
    :Field Public Name+''
    A Name of edit field
    :Field Public Action+
    A All action buttons have this name
    \nabla Render req;html
        :Access Public
        DoAction & If a button was pressed, deal with it
        html+'h2'Enclose'Reverse Text Example' A display a headline
        html,+'<br/>Enter Text:
        html,+'Name'Edit Name & An "Edit" called "Name" containing the Name
        html,+'<br/><br/>'
        html,+'Action'Submit'Reverse' & A button named 'Action' with Caption 'Reverse
        html,+'Action'Submit'Clear' & ... another button named 'Action'
        html+req('post'Form)html
                A Put a 'submit' form around it
    req.Return html
    \nabla
    \nabla DoAction
    :Select Action
    :Case 'Clear' O Name+'' A Name contents is changed to a null string
    :Case 'Reverse' O Name +\phiName & Name contents is reversed (symbol }\phi\mathrm{ flips what's in Name around)
    :EndSelect
    \nabla
:EndClass
```

Below is Web Page before \& after you press Reverse button. Notice reversed text. If you pressed Clear button Text would be erased \& pressing Home changes webpage to the parent webpage. To see goto jerrymbrennan.com click APL Apps on MiServer at bottom of page, then ALL then Simple MiPage with form. Click the orange snake to see the above code and again to see below code.

MiServer

Anyone who can write an APL function should be able to host it on the web. ${ }^{\text {TM }}$

Home

Home

Reverse Text Example

Enter Text: stressed
Reverse Clear

MiServer v2.1 Introduction to MiServer

APL References \& Info About My Website And Access To It

For educational use you can get a free version of this APL at: http://dyalog.com/ This includes everything. There are thousands of pages of online manuals and tutorials describing everything available.
Eight Intro Dyalog APL education videos: Do APL101-APL108 first. https://www.youtube.com/playlist?list=PL1955671BD6E21548
Online Dyalog APL tutorial with a sandbox where you can try out lines of APL code such as from this tutorial except for the plotting things.
www.tryapl.org
Complete APL tutorial(not Dyalog specific) with a sandbox at:
http://aplwiki.com/LearnApl/LearningApl
Repository of articles, videos and tutorials about APL: http://aplwiki.com
Video shows Game of Life in APL. Video demos the amazing power \& conciseness of APL. http://www.youtube.com/watch?fmt=18\&gl=GB\&hl=enGB\&v=a9xAKttWgP4
More educational videos at: http://www.youtube.com/user/APLtrainer
Extensive(800+ pages) Dyalog APL tutorial book you can download for free http://dyalog.com/mastering-dyalog-apl.htm or http://dyalog.com/uploads/documents/MasteringDyalogAPL.pdf
http://en.wikipedia.org/wiki/APL_(programming_language) A Programming Language (APL). History and advantages of APL described.
Some information about Kenneth E. Iverson the inventor of APL. He was a Harvard Mathematics Professor, worked for IBM and won a Turing Award for creating APL. He first developed APL as a concise notation for mathematics. Later he developed it as a comprehensive computer language. http://en.wikipedia.org/wiki/Kenneth_E. Iverson
My APL Educational Web page. Goto: http://JMB.APLCloud.com or my web page http://jerrymbrennan.com/ \& click on APL Lessons using MiServer at page bottom to see menu below of many interactive example APL web pages of games, lessons and math and language utilities. Click orange dragon upper left on every page to see actual APL code for that page \& Home button takes you back to main menu. Click Practice using live APL below to try all the examples in this handout yourself or do anything else. Play numerous games, watch videos, do many interactive tutorials and learn about your logical thinking errors and then see the actual code that created everything. (SEE NEXT PAGE FOR MAIN MENU Note: there are many submenus also)

MiServer: click orange dragon, see APL code

Welcome to MiServer!

This page contains links to a variety of example pages to help demonstrate some of MiServer's features
A "MiPage" is a Miserver page.

Basic HTML Page
Simple MiPage using no template
Simple MiPage using the "MiPage" template
Simple MiPage with a form:Reverse
Calculation and Graphics
jQueryUI and Other Widgets
Database - data driven page
Shopping Cart
JQ.On Examples
Conway's Game of Life
Lots of jQuery Widgets
HTTP Request Examination and HTTP Authentication
Who Was Anna Brennan
Animal Mastermind Game
Factor Game
Too Postive: Psychic Computer Game
Bingo Game
Bingo Brian Game
WordFind Game
Reverse Game
CB:Test Your Logic Skills Game
Rock Paper Scissors: Play Against Computer Game
3 Doors:Test Your Logic Skills Game
Stylometry:Rate Your Writing or Compare it to Masters
Regular Polygon Plot
Solve and Plot Any Triangle
Match Them Live Intro To APL Programming
Math Word Problem Converted to APL and Solved
Simultaneous Equation Tutorial Calculator
Practice using live APL
Taming Statistics using live APL
File Upload
Obesity Quotient
Adaptive Vocabulary Test

Examine a simple HTML page
This page is "plain" - without any wrapping.
This page uses a MiPage template to add style, header, footer, etc.
Simple MiServer form handling
Using LinReg and RainPro
Explore some of the jQuery widgets for which MiServer provides APL functions.
Using MiServer's SQAPL interface and the jQuery TableSorter
Using APLax
Explore APLax (APL + Ajax) and event handling
Using APLIax and John Scholes' Dfn to implement the Game of Life
One page that combines many of the jQuery widgets
Userid= userid, Password= password
Learn About Anna Brennan
Courtesy of Jerry Brennan
Math Game by Jerry Brennan
Computer Reads Your Mind Game (factors)
Math Game (factors)
Math Game Debug
Find all Words inside a Word
Find word that are other words in reverse
For programmers and others a quick test
Can Computer Learn Your Habits?
For programmers and others a quick test
Text Analytics to rate/compare/identify authors
Using Polyplot and RainPro
using 3 bits side/angle information
Begin Here to Learn APL with live session(24 Presidents)
Easy Way with live APL session(spouse ages)
Easy Way with live APL session(horse and mule)
All APL Examples from PDF available here to try
Learn and do Statistics with APL Examples
Test upload
Predict Obesity For Children Under 5
Very Quick Vocabulary level Test

[^0]: ${ }^{1}$ From Algebra Can Be Fun by Ya I Pearlman 1936 By Jerry Brennan

