
By Jerry Brennan Page 1 of 68 5/28/2020

Some APL Examples
By Jerry M Brennan PhD jbrennan@hawaii.rr.com (808)538-0343

This PDF, all examples & most programs & more available to try at my website:
jerrymbrennan.com (at bottom choose: APL Lessons & Examples: Online Tutorials)

TABLE OF CONTENTS (*=easy *****=hard)
The Birthday Problem *.. 2
Two Dice – How Lucky Are You? **............................. 4
Probability of Two Dice Being Equal ***....................... 4
Name The Order Of The Presidents *............................ 9
Stock Market With APL: Looking and Predicting **** 10
More Stock Market Calculations***............................ 11
The Power of 11 ***.. 12
Mortgage Calculations ****................................... 14
Roots of a Polynomial ****................................... 15
Quadric Equations and Functions *****........................ 19
Integration: Find Area Below Any Equation in 1 Line APL *** .. 21
Basic Statistics ***... 23
Kendall’s Tau : Rank Order Correlation ****.................. 25
Linear Regression: compute Best Fit line from raw data **** .. 26
Solve Set of Equations Easily with APL (Cons⌹Coefs) **** 28
The Horse & Mule Problem (WORDS TO ALGEBRA TO APL) *** 29
Linear Quad & Cubic Regression ***** reg←{x y←⍵ ⋄ y⌹x∘.*⌽0,⍺} 30
Plotting 3 Exponential Functions to Compare **** 31
Plotting in General in APL *................................. 32
Multiple Regression.. 32
Alien Attack * .. 33
Alien Attack Two *****....................................... 34
How Often Will Current Year ÷ By Your Age Be Even? * 37
Are all Numbers of Form abcabc Divisible by 13? *** 38
What Is Your Name Worth? *................................... 39
Rate Writing Based Upon Word And Sentence Length *** 40
Stylometry: The analysis of text documents ***** 41
Four Fun With Numbers *****.................................. 43
How Many Draws To Get An Ace? ****........................... 45
Five Card draw Probabilities ****............................ 46
An Optimal Stopping Problem: Dating For Dummies **** 48
The twins problem (using math, Matlab and APL) *** 50
Generate Numbers 1-10 From Digits 1-4 Using APL Symbols **** . 54
Plotting Regular Polygons **................................. 57
Plotting Any Triangle Given Some Sides & Angles ** 58
Bingo **** .. 63
Writing Web page using APL Using Mildserver *** 66
APL References & Info About My Website And Access To It 67

mailto:jbrennan@hawaii.rr.com

By Jerry Brennan Page 2 of 68 5/28/2020

The Birthday Problem *
If you go to a party and there are 35 people there what is the chance that
two of the people will have the same birthday.
From Wolfram: The odds are about 81%. The formula is listed below.
http://www.wolframalpha.com/input/?i=birthday+problem+35+people

In APL you can easily create a program to calculate the formula like this:

 birthdaysame←{⎕FR←1287 ⋄ 1-(!365)÷(365*⍵)×(!365-⍵)}

The ⎕FR←1287 tells APL use double precision arithmetic (needed because of
very large factorial & power calculations). The ⍵ stands for n in the above
equation i.e. # people at party. In APL factorial symbol(!) goes in front
of number. Also in APL calculation goes from right to left so the entire
denominator is calculated first, then the division occurs and finally the
subtraction from 1. All to right of ⍝ is a comment & not executed.
Now lets test out the program for the same 35 people at the party.

 birthdaysame 35 ⍝ so you enter this for 35 people like above
0.8143832389 ⍝ & computer returns .81438 same result as above

So there is about an 81% chance that two people will have the same
birthday. Lets try a couple of others and see the percents.

birthdaysame 25 ⍝ you enter this for 25 people at the party
0.568699704 ⍝ get ~57% of time at least 2 have same birthday

birthdaysame¨ 50 66 ⍝ enter this get odds for each(¨) 50 & 66 people
0.9703735796 0.9980957046 ⍝ 97% for 50 people and 99.8% for 66 people.

So it looks like once we get to about 66 people odds are almost 100%.

http://www.wolframalpha.com/input/?i=birthday+problem+35+people

By Jerry Brennan Page 3 of 68 5/28/2020

NOW LETS PLOT THESE PROBABILITIES **
for all the #’s of people from 1 to 66. Apl has a special operator called iota
(⍳) that will easily generate all the numbers for one to any number you want.

 ⍳6
1 2 3 4 5 6 ⍝ monadic ⍳ called: index generator makes numbers 1-6
 10+⍳8
11 12 13 14 15 16 17 18 ⍝ generates numbers 1-8 first then adds 10 to each. So:

So here’s code line that calculates/plots odds each(") # of people from 1 to 66.

plotxy X (Y←birthdaysame ¨X←⍳66) ⍝ for each # 1 to 66(⍳66) and plot
View PG ⍝ to see it ⍝ press enter on this line to see plot

APL has very sophisticated plotting/graphing & with a little effort we can
make a grid line plot. (Y axis:the odds for # 1-66 by X axis:the # 1-66)
You can see below for example that for 40 people the odds is about 90%.
Plotting all possible odd shows a curve not a straight line.

Here’s the plot fns : To create it type)ed plotxy press enter and type in

R←{ax0}plotxy data
⍝ plot data:x=col1 y=col2 or x=vector1 y=vector2
 ax0←0=⎕NC'ax0' ⍝ if no ax0 axes cross at 0
 :If 2=≡data ⋄ data←⍉↑data ⋄ :End
 ch.Set'Lines' 1 2 4 5
 ch.Set¨(ax0,ax0,1)/('Xint' 0)('Yint' 0)('XYPLOT,GRID')
 ch.Plot data ⋄ PG←ch.Close
 R←'View PG ⍝ to see it'

Press ESC when the above lines have been entered and then copy in rainpro.

)copy rainpro ⍝ this will copy in all the fancy APL graphics

By Jerry Brennan Page 4 of 68 5/28/2020

Two Dice – How Lucky Are You? **
In APL the ? is used to generate random numbers so

 ?6 ⍝ generates a random number between 1 and 6 each time you do it
3 ⍝ got a 3 this time
 ?6
5 ⍝ got a 5 this time

To throw two dice you need two 6’s

 ?6 6
2 4 ⍝ got a 2 and a 4

dice←{⍝ Here’s a program to interpret 2 dice throws. To call: dice ?6 6
 ⍵≡6 6:⍵,'Box Cars' ⍝ if inputs(⍵) match(≡)6 6 display Box Cars
 ⍵≡1 1:⍵,'Snake Eyes' ⍝ if inputs(⍵) match(≡)1 1 display Snake Eyes
 =/⍵:⍵,'Pair' ⍝ if inputs(⍵) are equal(=/) display Pair
 7=+/⍵:⍵,'Seven' ⍝ if inputs(⍵) sum(+/)=7 display Seven
 ⍵,'Unlucky' ⍝ else display Unlucky
 }
 dice ?6 6 ⍝ turns 2 6’s into random numbers between 1 and 6
2 5 Seven ⍝ result was a 2 and 5 which sums to lucky 7
 dice ?6 6 ⍝ try again 2 random numbers between 1 and 6
2 1 Unlucky ⍝ result this time was 2 and 1 which matches none of if’s
 dice¨ ?5⍴⊂6 6 ⍝ 5 sets(5⍴) of 2 6’s(⊂6 6), random & check each(¨) set
 2 3 Unlucky 2 2 Pair 6 4 Unlucky 2 3 Unlucky 3 4 Seven ⍝ 5 results

Probability of Two Dice Being Equal ***
Lets do 5 throws of 2 dice. To do this enclose(⊂) 5 copies(⍴) of two 6’s
and let the ? turn all 5 pairs of 6’s into random pairs of numbers 1-6:

 ?5⍴⊂6 6 ⍝ this is APL command and result is on next line
 6 2 2 1 6 6 6 6 1 4 ⍝ we got five pairs of numbers(notice extra
space between each pair. Also notice we got two pairs (of 6’s). To make APL
count matches we put an equal sign(=) between each pair(/¨) like this.

=/¨?5⍴⊂6 6
0 0 1 1 0 ⍝ The ones tell us which pairs matched: (pairs 3 and 4)

Now lets add these 1’s(with +/) getting 2 & divide by 5 to get the odds of
.4 Finally multiply by 100 to get 40 (for 40% matching pairs)

100×(+/=/¨?5⍴⊂6 6)÷5
40 ⍝ so this time we got 40% matches (2÷5)

Now lets write a program to do this and call it DiceEqual.

 DiceEqual←{100×(+/=/¨?⍵⍴⊂6 6)÷⍵} ⍝ variable omega (⍵) replaces 5

Now with ⍵ we can try bigger samples and see if the real underlying
probability is indeed 40%. Lets just go for it with a million throws to get
a real good idea what the real probability is.

DiceEqual 1000000 ⍝ throw pair of dice million times get % equal
16.6442 ⍝ looks like about 16.6% of time dice will match (not 40%).

Now lets try it 5 times with 100 throws each time(¨):

DiceEqual¨5⍴100
27 26 15 16 21 ⍝ got some variability between 15% and 27% matches

Now lets try it 5 times with 1,000,000 throws each time(¨)

By Jerry Brennan Page 5 of 68 5/28/2020

DiceEqual¨5⍴1000000
16.6033 16.6032 16.6488 16.6859 16.6377 ⍝ always got 16.60% to 16.69

From this we can see the advantage of large random samples. Large samples
are less variable and they are more accurate. There are actually formulas
that allow us to see the actual odds. The probability of two independent
random events occurring together is simply the product of the probabilities
of each event. In this case each die has 6 sides so the probability of
getting say a 3 on one throw is 1/6 and the probability of any particular
pattern such as “3 3” is 1/6×1/6=1/36 which is 1 chance in 36. In our case
we have 6 different ways to get a pair 1 1,2 2,3 3,4 4,5 5 and 6 6. So the
odds of getting a matching pair is 6/36 which equals .1666666666. Looking
back at our 5 1 million throws we can see that a sample size of 1,000,000
produces some pretty accurate results while the 5 size 100 samples were not
so good. Just for fun lets try 1,000,000 throws 20 times and average them.

Mean←{+/⍵÷⍴⍵} ⍝ Mean program add up #’s(+/⍵) and divide by n(⍴⍵)
Mean¨ (1 2 3)(8 6)(?1000⍴50) ⍝ Mean each(¨)note:last=1000 rand# 1-50

2 7 25.015 ⍝ means for each group of numbers.
Mean DiceEqual¨20⍴1000000 ⍝ 20 groups of 1,000,000 pair throws

0.16662385 ⍝ took 17 seconds for my computer but is even more accurate.

Now lets see if the larger samples are less variable as suggested above by
looking at some frequency plots. First I need a rounding function to round
the percents to whole numbers so they can be put in categories. APL has the
floor function(⌊) which is useful here. But we can’t just use the floor
function because it always rounds down.

 ⌊1.2 3.4 1.8
1 3 1 ⍝ all numbers are rounded down, but we need 1.8 to be rounded up.

A solution is to add .5 to each number then use the floor(⌊) function

⌊.5+1.2 3.4 1.8 ⍝ so the #’s become 1.7 3.9 2.3 and
1 3 2 ⍝ proper rounding is done. ⌊1.7 3.9 2.3 is 1 3 2

So here is my round function. It is a little more general than needed here
so it can round to any number of decimal places by multiplying the number
by some magnitude of 10, adding .5, finding the floor then dividing it back
down by the same order of 10. It also has a default(⍺←0) which says to
round to 0 decimal places if nothing else is specified to the left.

round←{⍺←0 ⋄ (⌊0.5+⍵×10*⍺)÷10*⍺} ⍝ define the round function
round 2345.45678 ⍝ default round to 0 (whole number)

2345
1 round 2345.45678 ⍝ round to 1 decimal place

2345.5
2 round 2345.45678 ⍝ round to 2 decimal places

2345.46
 ¯2 round 2345.45678 ⍝ round to 100’s place with ¯2

2300

Next we need a program to put rounded results into categories:

Freq←{↑(⍕¨u)(+⌿⍵∘.=u←u[⍋u←∪⍵])} ⍝ Here is the freq program:

Freq finds unique(u) input values(⍵), sorts them(u[⍋u]), makes a
table(rows=⍵ & cols=u) where each row value is matched to each col

By Jerry Brennan Page 6 of 68 5/28/2020

value(∘.=) so each cell is 1 or 0, then adds up all matches in each
col(+⌿) to determine the frequencies for each unique #. (+⌿⍵∘.=u)

Now we can do some plotting using the built in barchart icon. Lets create
500 10’s(500⍴10) and send each(¨) to DiceEqual which creates 500 random
samples of size 10 of 2 dice tosses and calculates percentage of equal
pairs for each of the 500 samples of size 10. The percentages are passed to
round which rounds them to whole numbers and passes them to freq which
counts up how many times each unique (∪) percentage occurs and creates a
table of the values and their frequencies passes this table to DATA where
the values and their frequencies are stored. The plus sign(+) at the
beginning of line displays 2 row data table that’s stored in data

 +DATA←Freq round DiceEqual¨500⍴10 ⍝ call with 500 samples size=10
 0 10 20 30 40 50 ⍝ this row shows the percentages that occurred
86 145 147 79 33 10 ⍝ this row is frequency of percentage above it

FreqBar DATA ⍝ Now make a Frequency Bar chart of DATA

We have a range of 0% to 50% matching pairs, showing tremendous variability
So 0% matches occurred 86 times 10% matches occurred 145 times etc.
Now lets try 500 samples of size 100

 +DATA←Freq round DiceEqual¨500⍴100 ⍝ 500 samples of size 100
 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
1 5 4 11 27 29 31 44 48 47 56 42 46 33 22 22 12 7 7 6
 FreqBar DATA ⍝ Frequency Bar chart of DATA

By Jerry Brennan Page 7 of 68 5/28/2020

A smaller range of 8% to 26% matching pairs but still lots of variability

Lets try 500 samples of 1,000

 +DATA←Freq round DiceEqual¨500⍴1000
 13 14 15 16 17 18 19 20 22
 2 13 59 149 136 102 31 7 1
 FreqBar DATA ⍝ Frequency Bar chart of DATA

Even smaller range of only 13% to 22% matching pairs. We are getting close

Lets try 500 samples of 10,000:

 +DATA←Freq round DiceEqual¨500⍴10000 ⍝ 500 samples of size 10,000
 16 17 18
 136 358 6
 FreqBar DATA ⍝ Frequency Bar chart of DATA

By Jerry Brennan Page 8 of 68 5/28/2020

We have a range of only 16% to 18% matching pairs with only 6 at 18 and
many more at 17 than 16. Thus we are zeroing in on the theoretical value of
16.66666. A sample size of 10,000 thus almost guarantees a close estimate
of the true value. Good scientific research thus tries to get large sample
sizes if possible for this reason. Sampling errors becomes a much smaller
concern.

Lets try sample size 10,000 again to see if we’ll have consistent results:

 +DATA←Freq round DiceEqual¨500⍴10000 ⍝ 500 samples of 10,000 again
 16 17 18

 158 339 3
 FreqBar DATA ⍝ Frequency Bar chart of DATA

We have range of 16% to 18% again and other frequencies are very very
close. Replication is another important part of the scientific method in
verifying that we are on the right track. Other things we could do to
verify this result would be for you to try this on your computer which may
have a different random number generator or you could do the 500×10000 dice
rolls yourself to check these results. ;)

By Jerry Brennan Page 9 of 68 5/28/2020

Name The Order Of The Presidents *
A clueless student faced a pop quiz to match list of 24 US presidents with
another list of 24 terms(years) of office. Being clueless they had to guess
every time. On average how many would they guess correctly?_____

Since we don’t know the probability formula lets run quick Monte Carlo
simulations. Use APL random # generator ? to get the avg # you’d get by
randomly guessing. First simulate match test with only 5 numbers to match.

 5?5 ⍝ enter this (use 5 not 44 for the moment)
5 4 3 1 2 ⍝ and the numbers 1-5 are rearranged randomly
 5?5 ⍝ enter it again
3 4 2 1 5 ⍝ and get a different order back
 (5?5)=(5?5) ⍝ compare teachers correct order to your guesses
0 0 1 1 0 ⍝ and you got 2 right (the 3rd and 4th ones).
 (5?5)=(5?5) ⍝ try it again
0 0 0 0 0 ⍝ and you got 0 right
 +/(5?5)=(5?5) ⍝ lets add them up so we don’t have to count
1 ⍝ we got 1 of the 5 right this time.

Now turn this to a function & run lots of times to see the average result.

avg←{+/⍵÷⍴⍵} ⍝ first write fns to compute average
presmatch←{+/(⍵?⍵)=(⍵?⍵)} ⍝ fns counts # matches for ⍵ presidents
avg presmatch 5 ⍝ test it for 5 presidents
0 ⍝ no matches

avg presmatch¨100⍴5 ⍝ test 5 pres 100 times using each(¨)
0.95 ⍝ average correct =.95

avg presmatch ¨100⍴5 ⍝ average this time =1.11
1.11
Now run 100,000 times & get more accurate estimate then try 44 presidents.
 avg presmatch ¨100000⍴5 ⍝ first for 5 presidents
1.000726 ⍝ pretty close to 1
 avg presmatch ¨100000⍴24 ⍝ now for the 24 presidents
1.000088 ⍝ interesting basically 1 again.
 avg presmatch ¨100000⍴125 ⍝ what if there were 125 presidents?
.99986 ⍝ still ~1 that is pretty unexpected!

Conclusion:
1. Study! Guessing is not going to get you very far on any matching test.
2. Learn APL, so you can easily figure out what risks are in many things.

Above example is from Digital Dice:Computational Solutions to Practical
Probabability Problems by Paul J. Nahin 2008. The book uses MATLAB a fancy
math/statistics program to show code for this example. Here is equivalent
13 lines of MATLAB to 1 line of APL: {+/⍵÷⍴⍵}{+/(⍵?⍵)=⍵?⍵}¨1000000⍴24

By Jerry Brennan Page 10 of 68 5/28/2020

Stock Market With APL: Looking and Predicting ****

Get data click http://jmb.aplcloud.com/jbgames/Data/DJIACleaned.txt
Then save this file as maybe DJIACleaned.txt somewhere on your computer
Top line of file has DATE VALUE the rest have the data. import needs this.
 D←import '' ⍝ from APL choose your downloaded file DJIACleaned.txt

⍝ Inspect the data(2004 to 2014) we read from file into namespace D:
D.⎕NL 2 ⍝ shows all variables in namespace D

DATE
VALUE

⍴D.DATE ⍝ show # of dates (⍴)
2609 ⍝ 2609 dates(from 2004 to 2014)

⍴D.VALUE
2609 ⍝ and 2609 stock values each of 2609 dates

5↑¨D.DATE D.VALUE ⍝ show 1st 5 dates and then stock values
20041220 20041221 20041222 20041223 20041224 10661.6 10759.43 10815.89
10827.12 0

↑5↑¨D.DATE D.VALUE ⍝ ↑change nested vector to matrix to see better
20041220 20041221 20041222 20041223 20041224
 10661.6 10759.43 10815.89 10827.12 0

⍝ Clean data:
⍝ 1)keep only DATEs and VALUEs for VALUEs ≠ 0 (elim Sundays/Holidays)

⍴¨D.DATE D.VALUE←(⊂D.VALUE≠0)/¨D.DATE D.VALUE
2518 2518 ⍝ ⍴¨ shows 2,518 values left (down from original 2609)

plotxy (⍳⍴D.VALUE)(D.VALUE) ⍝ try this to see quick plot 2518 days

http://research.stlouisfed.org/fred2/series/DJIA/downloaddata

By Jerry Brennan Page 11 of 68 5/28/2020

⍝ Analyze the data 2004-2014
(⊂D.VALUE=⌊/D.VALUE)/¨D.DATE D.VALUE

20090309 6547.05 ⍝ lowest stock market day was March 9, 2009

(⊂D.VALUE=⌈/D.VALUE)/¨D.DATE D.VALUE
20141205 17958.79 ⍝ highest stock market day was Dec 5, 2014

⍝ lets get some day to day differences in stocks now

D.DIF← -2-/D.VALUE ⍝ (-2-/) takes day to day differences & changes sign

5↑D.VALUE ⍝ Show first 5 days of Dows
10661.6 10759.43 10815.89 10827.12 10776.13

4↑D.DIF ⍝ Show first 4 Dow differences(3 ups & 1 down)
97.83 56.46 11.23 ¯50.99

+/D.DIF>150 ⍝ how often Dow up > 150 points in one day
209 ⍝ 209 days

+/0<(¯1⌽D.DIF>150)/D.DIF ⍝ how many times did it rise again the next day
100 ⍝ 100 days (from total of 209 rise days)

avg (¯1⌽D.DIF>150)/D.DIF ⍝ average amount of change day after 150 pt rises
¯15.26492823 ⍝ ¯1⌽ rotates data by 1 so selects day after rise

+/D.DIF>0 ⍝ how many times did Dow go up at all in one day
1355 ⍝ 1355 days(remember total days was 2609)

avg D.DIF>0 ⍝ average # days it rose at all
0.5383392928 ⍝ 1355/2518 equals about 54% (little more than ½)

avg D.DIF ⍝ Average daily stock change.
2.827393723 ⍝ It rises avgerage <3 a day.

 (⊂0,D.DIF=⎕←⌊/D.DIF)/¨D.DATE D.VALUE ⍝ when was the biggest fall
¯777.68 ⍝ 777.68 points lost
20080929 10365.45 ⍝ 09/29/2008 fell to 10365.45

(⊂0,D.DIF=⎕←⌈/D.DIF)/¨D.DATE D.VALUE ⍝ when was the biggest rise
936.42 ⍝ 936.42 points up
20081013 9387.61 ⍝ on 10/13/2008 up to 9387.61

⍝ But what if market drops 600+ pts? What should you do the next day?
avg (¯1⌽D.DIF<¯600)/D.DIF ⍝ average rise next day after down day
291.696 ⍝ so if market down buy next day if up sell next day. Try ¯400 or?

⍝ Your turn. Noodle around, learn APL and stock market! Happy Investing!

More Stock Market Calculations***
In this section we will play with the stock market some more to see which
years, months, weeks and days might be best for stocks. First we need to
break D.DATE up into D.YR D.MONTH D.DAY and D.WKDAY. This is done below by
enclosing(⊂) # D.DATE which when formated(⍕) is an 8 long character string
for each date. The first # 20041220 is broken into 3 chars using the 1's in
the string 1 0 0 0 1 0 1 0 for YR MONTH DAY like this 2004 12 20. YMD is a
vector of 2518 pieces. The 1st contains 2004 12 20, the 2nd 2004 12 21 etc.

By Jerry Brennan Page 12 of 68 5/28/2020

(for example ⍎¨1 0 0 0 1 0 1 0⊂⍕20041220 would produce 3 #’s 2004 12 20
The execute(⍎) each(¨)converts the char strings(from ⍕ back to numbers))

D.(YR MONTH DAY)←↓⍉↑YMD←⍎¨¨(⊂1 0 0 0 1 0 1 0)⊂¨⍕¨D.DJ[;1] ⍝split each date
D.WKDAY←7|-38339-days ¨YMD ⍝ 7 days in week. 2004 12 20 is a Monday=1
⍝ note: 38339=day before 2004 12 20. days returns days since 1899-12-31

Now lets see which weekdays, months, years, and weeks of month were best.

 2⍕{avg(⍵=1↓D.WKDAY)/D.DIF}¨⍳5 ⍝ avg close each week day to 2 decimals
¯0.64 9.83 1.15 2.30 1.16 ⍝ lowest close=Mon & highest=Tues

2⍕{avg(⍵=1↓D.MONTH)/D.DIF}¨⍳12 ⍝ so Best months 3 & 4, worst 1 & 6
¯5.59 2.39 9.30 13.53 ¯3.44 ¯8.87 8.69 ¯1.72 5.54 2.62 4.76 6.92

 2⍕{avg(⍵=1↓D.YR)/D.DIF}¨ 2003+⍳11 ⍝ Best years 2004, 2013 worst 2008
15.18 ¯0.26 6.95 3.19 ¯17.74 6.55 4.56 2.54 3.55 13.78 4.92

In the next example month is divided into 4 approximately equal segments of
about 8 days(last segment will be <8 depending on days in month).
 2⍕{avg(⍵=1↓⌈D.DAY÷8)/D.DIF}¨⍳4 ⍝ ÷ days 1-31 by 8 & round up(⌈)
 1.72 2.80 1.10 6.43 ⍝ result last week in month stocks go up much more

The Power of 11 ***
11 is an important number. It is used as a verification check for many
things such as 10 digit book bar codes, overcoming skips or scratches on
CDs and in all sorts of internet communications where static etc causes
losses. By using 11 lost parts of information can be identified so all the
data does not have to retransmitted.
Look at http://www.numberphile.com/ & click on 11-11-11 Eleven link.

In the book industry when 10 digit bar codes are used the 10 digits are
always selected in a way so the check number is evenly divisible by 11.
This is explained on the video link above. Here is an example:

Here is a barcode: 0 3 1 2 1 5 2 2 7 2 from book Tongue-Fu by Sam Horn.

Each of these numbers is multiplied by a number from 10 to 1.

 0 3 1 2 1 5 2 2 7 2 bar code
10 9 8 7 6 5 4 3 2 1 numbers from 10 to 1

 0 27 8 14 6 25 8 6 14 2 resulting multiplication

The sum of (0 27 8 14 6 25 8 6 14 2) is 110 which is divisible by 11:
(110÷11=10) . All 10 digit barcodes on backs of books when multiplied like
this and added up are divisible by 11. This is called the checksum.

Here’s how to do this in APL. First enter the program like this:

barcode11←{0=11|+/⍵×⌽⍳10}

and test it like this:

 barcode11 0 3 1 2 1 5 2 2 7 2 ⍝ good bar code
1 ⍝ 1 means good, 0 would be bad

http://www.numberphile.com/

By Jerry Brennan Page 13 of 68 5/28/2020

computer returns 1 for yes if it is divisible by 11. A bad barcode will
result in a 0.

 barcode11 7 3 1 2 1 5 2 2 7 2 ⍝ bad barcode
0 ⍝ 0 means bad, 1 would be good

Here is how it works from right to left: The program {0=11|+/⍵×⌽⍳10}
generates the numbers 1-10(⍳10), reverses them (⌽) and multiples the
reversed numbers(10-1) by ⍵(which is the barcode read into the program)
then sums the resulting numbers up(+/) and finds the residue or
remainder(|) of division by 11. If the residue equals(=) 0 that means the
sum is evenly divisible by zero with nothing left over(no residue) and the
program returns a 1(if true that 0=the residue) or 0(if 0≠ the residue)

Here is an example using residue(|):

 13|26 28 30 ⍝ remainder(|) of 13 divided into each # 26 28 30
0 2 4 ⍝ 13 into 26 has no remainder. 13 into 28 residue is 2 and 30 is 4

Now I was curious how good this barcode check was so I tested it by taking
a valid(divisible by 11) bar code and randomly changing 1 number and
checking the new number to see if would indeed fail the divide by 11 check.

I wanted to check it in a lot of ways to be certain this barcode method
would catch all slight changes, so I wrote a program to randomly change one
number in a 10 digit bar code. Here is my program:

change1←{c[i]←((¯1+⍳10)~((i←?10)⊃c←⍵))[?9] ⋄ c}

Here's how it works. 1st there are 2 commands, diamond(⋄) separates them.

c[i]←((¯1+⍳10)~((i←?10)⊃c←⍵))[?9] This part determines a random number to
insert into random ith position(c[i]←) of my changed string c. First the
changed string is created by copying the old string (c←⍵). Next, a random
position to change(i) between 1-10 is made by (i←?10). The code:(¯1+⍳10)
gets the numbers 1-10 and adds a negative 1(¯1) to each resulting in the
numbers 0-9. The ~((i←?10)⊃c) part finds the value currently in position i
of c and eliminates(~) it from the numbers 0-9 found by:(¯1+⍳10) so I am
left with only the 9 new possible numbers to insert in c[i]. The [?9] part
selects one of these 9 new numbers which is placed in (c[i]←).

c by itself after the diamond(⋄) simply tells the program to return the
entire changed barcode(c) back to be displayed when the program is called:

 X←0 3 1 2 1 5 2 2 7 2 ⍝ for convenience store good barcode in X
 change1 X
0 3 1 2 6 5 2 2 7 2 ⍝ #1 random change 5th digit to 6
 change1 X
0 3 1 2 2 5 2 2 7 2 ⍝ #2 random change 5th digit to 2(same pos)
 change1 X
0 3 1 2 1 5 2 2 2 2 ⍝ #3 random change 9th digit to 2
 change1 X
0 3 1 2 6 5 2 2 7 2 ⍝ #4 random change 5th digit to 6(same as #1)

Now I can check these to see if they fail the divide by 11 check.

By Jerry Brennan Page 14 of 68 5/28/2020

barcode11 0 3 1 2 6 5 2 2 7 2
0

The zero means it failed the check. Indeed all these 1 digit changes fail
the check. This is promising but I need to do much more checking to be sure
so I need to simplify things some more to get more efficient.

First I can put the two programs together to check more quickly like this:

 barcode11 change1 X
0

change1 changes 1 random # of barcode in X & then barcode11 checks that #

If I wanted to see the change & check it too I could do this.

 c,'check=',barcode11 c←change1 X
0 3 1 2 7 5 2 2 7 2 check=0 ⍝ X with 1 # changed(7) fails the check.

This shows the changed code and that it failed the check.

However, this is still not a very extensive check, so I did the following
which does 100,000 random changes on the string(X) and adds up how many
pass the check. The result was zero, meaning none of the changes pass the
check, so I feel pretty confident that the 11 barcode check method is a
good one. Here is the program that does the 100,000 check.

 +/barcode11¨change1¨ 100000⍴⊂X
0 ⍝ none of the 100,000 new strings passes check

Here is how this works. First I made up 100,000 X strings with the same
valid barcode. The enclose (⊂) symbol takes the 10 digit string(X) and
puts in a packet and then 100000⍴ makes 100000 of these packets. The each
operator (¨) tells the programs to operate on each of the 100,000 X string
packets. The change1 program grabs each(¨) of these same good string
packets and makes one random change in each and passes it to the barcode11
program which checks each(¨) of the 100,000 new string packets and returns
a string of 100,000 0’s and 1’s indicating if each changed string passed
the divide by 11 check. Finally the string of 100,000 0’s and 1’s is added
up (+/) and the result is zero which is displayed and tells us none of the
100,000 random changes was valid.

Mortgage Calculations ****
Sample: from Wikipedia http://en.wikipedia.org/wiki/Amortization_schedule

Problem:You want to buy a $100,000 apartment in Waikiki. Should you get a
loan for 7% for 20 years or 4% for 30 years? Two things are relevant here.
1) Which loan has lower monthly payment? 2)What is total cost of each loan?

P=Principle i=monthly interest .07÷12months n=#payments:20yrs×12months

 P←100000 ⋄ i7 i4←.07 .04÷12 ⋄ n20 n30←20 30×12 ⍝ assign values
 MonthlyPaymentAnuityFormula←{P i n←⍵ ⋄ P×i+i÷((1+i)*n)-1} ⍝ define
 PresValOfAnuity←{A i n←⍵ ⋄ (A÷i)×1-1÷(1+i)*n} ⍝ define

Explore: Monthly payment for each loan(MP720 and MP430).

 +MP720 MP430←MonthlyPaymentAnuityFormula¨(P i7 n20)(P i4 n30)

http://en.wikipedia.org/wiki/Amortization_schedule

By Jerry Brennan Page 15 of 68 5/28/2020

775.2989356 477.4152955 ⍝ So monthly is much less for 4% 30 year loan.

Explore: How loan and interest payments change over time in these loans

PresValOfAnuity¨ (MP720 i7 (n20-7×12))(MP430 i4 (n30-7×12))
79267.91062 86059.4709 ⍝ MP430 owes more after 7 years of payments

P×i7 i4 ⍝ Initial interest paid(Principle×interest rate)
583.3333333 333.3333333 ⍝ Starting interest payment higher for 7% rate

MP720 MP430-P×i7 i4 ⍝ Initial pay to Prin (monthly paym–interest paid)
191.9656023 144.0819621 ⍝ So initially 7% loan is paying off quicker

(P-191.97 144.08)×i7 i4 ⍝ 2nd interest payment (on prin-prev prin pay)
582.2135083 332.8530667 ⍝ each pay less as part of loan is paid each month

MP720 MP430-582.21 332.85 ⍝ 2nd payment to Principle
193.0889356 144.5652955 ⍝ < interest paid so more to principle

create fns:)ed amort, press enter, type lines below in edit window, when
done press ESC & fns created & you back in session ready to try the fns.

amort←{P i n←⍵ ⍝ monthly payment table= Principle, Interest & Balance
 mp←{P i n←⍵ ⋄ P×i+i÷((1+i)*n)-1}P i n ⍝ fns mp=monthly payment
 pval←{A i n←⍵ ⋄ (A÷i)×1-1÷(1+i)∘.*⌽⍳n} ⍝ fns pres value every payment
 int←i×bal←pval mp i n ⋄ prin←mp-int ⋄ bal←bal-prin ⍝ get all results
 lbl←'Period' 'PrinPay' ' IntPay' ' Balance' ⍝ make column labels
 tbl←lbl⍪(⍕¨⍳n),(2⍕¨prin),(2⍕¨int),[1.5](2⍕¨bal) ⍝ put all together

tbl⍪(⊂'Total Paid'),(2⍕¨+/¨prin int),⊂2⍕0 ⍝ sum principle & interest
 }

Answer: call amort & get result. Last row is answer for cost of 7% loan.

amort P i7 n20 ⍝ call fns: loan payback table 240 rows(20×12).
Period PrinPay IntPay Balance
1 191.97 583.33 99808.03
2 193.09 582.21 99614.95
…………………………………………………………………………………………………. ⍝ rows deleted for brevity
239 766.33 8.97 770.80
240 770.80 4.50 0.00 ⍝ final payment and bal=0
Total Paid 100000.00 86071.74 0.00 ⍝ principle + $86071 interest Ouch!

Now try: amort P i4 n30. Is 4% cheaper than above $86,071.74 for the 7%
loan? Please note that though it is stated to be a 7% loan it is 7% every
year & becomes 86% in 30 years. Borrowing is expensive. Become a Banker!

Roots of a Polynomial ****
Given an equation such as y=2x2 +1x –10. what are it’s roots(the x values
that cause y to be equal to 0). Here is an APL program to find them:

 quadsim←{a b c←⍵ ⋄ d←(b*2)-4×a×c ⋄ (+/x),-/x←((-b),d*.5)÷2×a}

quadsim 2 1 ¯10 ⍝ try program equation: y=2x2 +x –10
2 ¯2.5 ⍝ so if x=2 or ¯2.5 the equation for y = 0

By Jerry Brennan Page 16 of 68 5/28/2020

to check the result: substitute 2 and ¯2.5 into the equation

 x←2 ¯2.5 ⍝ store roots in x
 (2×x*2)+x+¯10 ⍝ test the equation with values of x.
0 0 ⍝ 0 0 result so 2 & ¯2.5 are roots of eq.

The above check is clear but there is an even easier way in APL.

APL has a special symbol to insert values into equations of this general
type. It will also work for higher order equations like 3x5+2x3+x2+5. For
this equation if x←⍳6 then (x⊥¨⊂3 0 2 1 5) would result in the numbers 1-6
being inserted in the equation 3x5+2x3+x2+5 resulting in: 11 63 269 809 1935
3971. This makes it very easy to make y values from the x values or to test
to be sure the roots found are correct(result=0).

2 ¯2.5⊥¨⊂2 1 ¯10 ⍝ test x=2 ¯2.5 as roots of 2x2 +x –10
0 0 ⍝ 0 0 result so 2 & ¯2.5=roots of: 2x2 +x –10

But not all equations have 2 roots, some equations have only one root and
others have only imaginary roots. Here are two APL program to calculate any
of these possible cases the first labels the result the second just returns
the roots which can then be passed on to other APL programs. How many roots
there are can be determined by the sign(×) of the calculation of disc. If
sign of disc=1(positive) there are two real roots, if sign of disc=0(zero)
there is one real root and if sign of disc=¯1 there are two imaginary
roots. Here is the complete program with labeled output for the 3 cases:

QUAD←{⍝ roots of equation e.g. QUAD 2 1 ¯10 for: 2×x*2 +1×x –10
 a b c←⍵ ⋄ d←(b*2)-4×a×c
 d>0:'2 Real Roots:',(-b+1 ¯1×d*0.5)÷2×a
 d=0:'1 Real Root',-b÷2×a
 d<0:'2 Complex Roots',(u,'+',v,'I'),' and',((u←-b÷2×a),'-',(v←((-
d)*0.5)÷2×a),'I')
 }

To create this fns type)ed QUAD press enter & type lines into editor.
Lets test it out with the same example then with 2 other equations:

QUAD 2 1 ¯10 ⍝ ⍝ 2x2 +x –10
2 Real Roots: ¯2.5 2
 QUAD 3 ¯2 10 ⍝ 3x2 –2x +10
2 Complex Roots 0.333333 + 1.795054 I and 0.333333 - 1.795054 I

QUAD 9 12 4 ⍝ 9x2 +12x +4
1 Real Root ¯0.6666666667

Here is a modified version of quadsim that returns only real roots
unlabeled. This will be more useful to pass to plotting programs:

quad←{
 a b c←⍵ ⋄ d←(b*2)-4×a×c ⍝ input ⍵ to a b c ⋄ find disc d
 d>0(-b+1 ¯1×d*0.5)÷2×a ⍝ if disc>0 show 2 roots
 d=0:-b÷2×a ⍝ if disc=0 show 1 root
 d<0:⍬ ⍝ if disc<0 show nothing(⍬)
 }

By Jerry Brennan Page 17 of 68 5/28/2020

Lets try same 3 equations at once. Note: display is APL fns to display
results so you can see their structure. display is used for display only,
not when passing results to other programs.

 display quad ¨(2 1 ¯10)(3 ¯2 10)(9 12 4)
┌→─────┬─┬─────────────┐ ⍝
│¯2.5 2│0│¯0.6666666667│ ⍝ 2 roots, no roots, 1 root
└~────→┴⊖┴~────────────┘

Now lets plot equation 2x2 +x –10 so we can see its shape and where the
roots are. First we need to generate some x plotting values around the
roots of ¯2.5 and 2 so we can see these critical points clearly in the
upcoming plot. The program xaroundroots below does that. It takes the two
roots as input on the right and the number of x values to make on the left.
It then finds the difference(dif) between the two roots and generates
⍺(50) x values from the lower root(d) minus the difference to the upper
root(u) plus the difference so in this case the difference between roots
¯2.5 and 2 is 4.5 so 4.5 is subtracted from ¯2.5 giving ¯7 which is the
first x value as can be seen below. Then it takes the upper root which is 2
and adds 4.5 to that giving 6.5 which is the highest of the 10(⍺) x values.
If only 1 root it makes a guess at what would be a reasonable range.

xaroundroots←{⍺←50 ⍝ find ⍺ # of values around roots
 u d dif←{ ⍝ nested dfns to upper lower and diff
 2=⍴,⍵:u,d,((u←⌈/⍵)-d←⌊/⍵) ⍝ dif if 2 roots
 1=⍴,⍵:u,d,((u←⍵+5⌈|⍵÷2)-d←⍵-5⌈|⍵÷2) ⍝ dif if 1 root
 }⍵ ⍝ if 1 root near 0 sets to range of about 30
 du←(d,u)+(-dif),dif
 (1⊃du)+(¯1+⍳⍺)×(-/⌽du)÷⍺-1
 } ⍝ make ⍺ x values in range(1⊃du to 2⊃du)

To create this fns type:)ed xaroundroots then enter & type above lines

2⍕X←10 xaroundroots ⎕←quad 2 1 ¯10 ⍝ show roots & make 10 X values
¯2.5 2
 ¯7.00 ¯5.50 ¯4.00 ¯2.50 ¯1.00 0.50 2.00 3.50 5.00 6.50

2⍕Y←(2×X*2)+X+¯10 ⍝ put above X values into equation to get Y’s
 81.00 45.00 18.00 0.00 ¯9.00 ¯9.00 0.00 18.00 45.00 81.00

2⍕DATA←Y,[.5]X ⍝ put the X and Y values into a matrix for plotting.
 81.00 45.00 18.00 0.00 ¯9.00 ¯9.00 0.00 18.00 45.00 81.00
 ¯7.00 ¯5.50 ¯4.00 ¯2.50 ¯1.00 0.50 2.00 3.50 5.00 6.50

plotxy X Y ⍝ Now Plot the 10 points

By Jerry Brennan Page 18 of 68 5/28/2020

So now lets put this together in a little program so we can do it easily:

 rootsandplot←{⍺←100 ⋄ ch.Set'Footer' ⎕←ft←quad ⍵
 x←⍺ xaroundroots ft ⋄ y←x⊥¨⊂⍵ ⋄ plotxy x y}

Notes: this program really has 4 lines separated by diamonds (⋄)
1. ⍺←100 sets default to make 100 x & y values. If you don’t specify a
number on the left when you call the program you will get 100 x & y values.
2. ⎕← displays roots computed by quad program using input equation (⍵) and
then passes the roots to xaroundroots which finds 100 x values near the
roots so we will have a good plot around the roots.
3. y←x⊥¨⊂⍵ puts the found x values into the equation(i.e. ⍵=2 1 ¯10). As
mentioned above this tricky code is APL equivalent to y←(2×x*2)+x+¯10
4. finally plotxy passes x and y to little plot program I wrote to make a
pretty display. Here it is:

 R←{ax0}plotxy data
⍝ plot data:x=col1 y=col2 or x=vector1 y=vector2

 ax0←0=⎕NC'ax0' ⍝ if no ax0 axes cross at 0
 :If 2=≡data ⋄ data←⍉↑data ⋄ :End
 ch.Set'Lines' 1 2 4 5
 ch.Set¨(ax0,ax0,1)/('Xint' 0)('Yint' 0)('XYPLOT,GRID')
 ch.Plot data ⋄ PG←ch.Close
 R←'View PG ⍝ to see it'

To create this fns type)ed plotxy press enter and type lines into editor.
And enter line)copy rainpro to bring in the fancy APL graphics.
Now lets the try program rootsandplot for the equation: 2x2 +x –10

rootsandplot 2 1 ¯10 ⍝ call program shows roots and plots xy data
¯2.5 2 ⍝ shows roots. Plots 100 xy value pairs
View PG ⍝ to see it ⍝ just press enter on this line to see plot

By Jerry Brennan Page 19 of 68 5/28/2020

Notice where the roots(y=0) ¯2.5 and 2 are on the plot.

This program will plot data for any polynomial with 2 real roots simply by
entering the parameters for x2 x1 and x0.

Now lets try: y=15x2 + 8x + 0 and request only 50 values to plot.

 50 rootsandplot 15 8 0 ⍝ plot 50 xy points for y=15x2 + 8x + 0
¯0.5333333333 0 ⍝ shows 2 roots.
View PG ⍝ to see it ⍝ just press enter on this line to see plot

Again notice where roots are and see that xaroundroots centers plot nicely

Quadric Equations and Functions *****
Quadric equations are of the general form y=ax*2 + bx +c . The above
program only works when there are two roots and it does not tell us either
vertices or minimums of the function. So here is a more complete program.
Lets plot such an equation in APL. Lets try y=3x*2 + ¯6 + 2 . Here is a way
to plot such an equation in APL by entering just a b and c into the
program.

QuadPlot 3 ¯6 2
View PG ⍝ to see it

By Jerry Brennan Page 20 of 68 5/28/2020

The program footnote tells us that the function has a minimum at x=1 y=¯1
and that it crosses the x axis twice, once at .423 and again at 1.577.
Here is the QuadPlot program:

To create this fns type)ed QuadPlot press enter & type lines into editor.

QuadPlot(a b c);x;y;xint;xvert;yvert;mm;rng;ft
⍝ Plot quadratic eq: QuadPlot 2 ¯1 ¯7 for: 2x*2 -x -7 (a=2 b=¯1 c=¯7)

 mm←((1+a<0)⊃'F min' 'F max'),' at x y=' ⍝ "max" if a<0 otherwise "min"
 xvert←-b÷2×a ⍝ xvert=where y is min or max
 yvert←xvert⊥¨⊂a b c ⍝ solve eq for yvert using xvert
 xint←,quad a b c ⍝ quad formula for x intercepts
 rng←⍎(1+⍴xint)⊃'0,xvert' '0,xint' 'xint' ⍝ find range of x values to plot
 :If rng≡0 0 ⋄ rng←¯10 10 ⋄ :End ⍝ fix range if at 0 0
 x←xaroundroots rng ⍝ find good x values to plot
 y←x⊥¨⊂a b c ⍝ solve eq for y using x values
 ft←'y=ax*2+bx+c a=' 'b=' 'c='mm'xintcepts=',¨a b c(3⍕xvert
yvert),⊂3⍕xint
 ch.Set'Footer' ft
 plotxy x y

By Jerry Brennan Page 21 of 68 5/28/2020

Integration: Find Area Below Any Equation in 1 Line APL ***
Define the fns:

SIMPSON←{b e n←⍺ ⋄ X←b+(d←(e-b)÷n)×0,⍳n ⋄ d×+/((1⌽1 1,(n-1)⍴4 2)×⍎⍵)÷3}

Call fns: 0=begin interval 1=end interval 6=# rectangles X*2 is equation
to integrate(⍵).

 0 1 6 SIMPSON 'X*2'
0.3333333333

Here are the 2 actual fns with extensive comments in green. Actual code is
only the white. You can use SIMPSON and tell fns how many rectangles you
want or ADSIM if you want to set accuracy of result & the fns will figure
out how many rectangles are needed for the desired level of accuracy.

By Jerry Brennan Page 22 of 68 5/28/2020

Below is online version in action. Go to jmb.aplcloud.com & choose
IntroLive button. To Practice using live APL paste line below to Input:

3.1 6 5555 SIMPSON '|(.3×X*3)×1○X' ⍝ .3×X*3 × SinX from 3.1-6 5555 rects

As you can see the correct answer to 7 decimal places is 64.05415978 as
found by ADSIM. It requires a lot of very small rectangles added together
to be that accurate. SIMPSON takes more than 555555 such rectangles to be
accurate to only 4 decimal places and it overfills the workspace if I try
for more. The much more efficient ADSIM however can easily find the answer
to 7 decimal places.

By Jerry Brennan Page 23 of 68 5/28/2020

To see a plot of the area cut/paste line below to Input: field on web page
and press Calc below it.

3.1 6 .000001 PlotAreaUnderCurve '|(.3×X*3)×1○X'

Here is the program PlotAreaUnderCurve that calls ADSIM & plots the curve:

The above problem is interactively discussed in excellent detail at
http://www.intmath.com/blog/mathematics/riemann-sums-4715.

Email me at jbrennan@hawaii.rr.com if you want to learn more. OR
1)go to jmb.aplcloud.com
2)press IntroLive button
3)choose menu choice called:

Basic Statistics ***

 Mean←{(+/⍵)÷(⍴⍵)} ⍝ sum(+/) of #'s divided by #(⍴) of #'s
 Max←{⌈/⍵} ⍝ maximum of numbers(⌈/)

http://www.intmath.com/blog/mathematics/riemann-sums-4715
mailto:jbrennan@hawaii.rr.com

By Jerry Brennan Page 24 of 68 5/28/2020

 Min←{⌊/⍵} ⍝ minimum of numbers(⌊/)
 Range←{(max ⍵)-(min ⍵)} ⍝ range - max minus min of numbers
 Sort←{⍵[⍋⍵]} ⍝ sort numbers up(⍋). ⍒ would sort down
 Median←{mid←(1+⍴s←sort ⍵)÷2 ⋄ Mean s[(⌊mid)(⌈mid)]}
 Variance←{(+/(⍵-avg ⍵)*2)÷(¯1+⍴⍵)} ⍝ sample variance

Sdev←{(variance ⍵)*0.5} ⍝ sample standard deviation
Skew←{(+/(⍵-Mean ⍵)*3)÷(¯1+⍴⍵)×(Sdev ⍵)*3} ⍝ skew (+=right -=left)

 Kurtosis←{(+/(⍵-Mean ⍵)*4)÷(¯1+⍴⍵)×(Sdev ⍵)*4} ⍝ flatness -+ normal

The median is defined as the middle number if there are an odd # of #'s.
If there are an even # of numbers its the average of the two middle
numbers. The above median fns first sorts the data into s and finds the
midpoint which is either a whole number position for odd # of #'s or a
position 1/2 way between the two middle positions(mid) if there are an even
number of numbers. After the diamond(⋄) the fns averages the 1 or two
middle numbers s[(⌈mid)(⌊mid)]. Lets try a couple to see how it works.

Median 5 6 8 7 ⍝ s=5 6 7 8, mid=2.5, ⌊mid=2, ⌈mid=3
6.5 ⍝ s[2 3]=6 7, average of 6 7=6.5

Median 9 5 8 ⍝ s=5 8 9, mid=2, ⌊mid=2, ⌈mid=2
8 ⍝ s[2 2]=8 8, average of 8 8=8

Freq←{↑(⍕¨u)(+⌿⍵∘.=u←sort ∪⍵)} ⍝ define a frequency count fns Freq
 Freq num←?50⍴6 ⍝ call Freq with 50 rand(?) #’s(1-6) in num
 1 2 3 4 5 6 ⍝ here are the label #'s in row 1 of freqs
 9 10 7 7 11 6 ⍝ here are the frequencies in row 2 of freqs

The Freq function: u is sorted unique(∪)values of the 50 rand #'s(NUM)
#'s are counted into unique categories 1-6 (+⌿⍵∘.=u) & labeled(⍕¨u)

FreqBar Freq ?50⍴6 ⍝ make 50 rand #’s 1-6, turn into freqs, plot

Mode←{↑(⊂(f>1⌽f)∧(f>¯1⌽f))/¨v f←0,¨(↓Freq ⍵),¨0} ⍝ Mode uses Freq
 Mode NUM ⍝ call mode program with same num used above for freq.
 2 6 ⍝ two modes one at 2 one at 6
11 8 ⍝ mode at 2 has a frequency of 11. mode at 6 has frequency of 8.

By Jerry Brennan Page 25 of 68 5/28/2020

Modes are defined as any frequencies that are higher than frequencies
immediately before or after it or are at either end and are higher than the
one frequency that is either before it or after it. The program finds the
frequencies. in this case for values 1-6:9 10 7 7 11 6 and puts 0's before
and after the frequencies then compares by rotating(⌽) f to values before
and(∧) after and if it greater than both it is a mode as can be seen here:

↑v f (1⌽f) (¯1⌽f) ⍝ This displays v f 1⌽f & ¯1⌽f as a 4 row table
0 1 2 3 4 5 6 0 ⍝ v are the values with 0's on each end
0 9 10 7 7 11 6 0 ⍝ f 10 & 11 only ones greater than(>) 1⌽f & ¯1⌽f
9 10 7 7 11 6 0 0 ⍝ 1⌽f 7 & 6 are less that 10 and 11 above them
0 0 9 10 7 7 11 6 ⍝ ¯1⌽f 9 & 7 are less that 10 and 11 above them

Kendall’s Tau : Rank Order Correlation ****
Here is some code for first example and then another example I found
online. I also computed z score for it.
First your data in a1 and a2, then call the Ktau program. If two raters
rated 8 bands numbered 1-8. Ktau computes how similar the rank orders are
by counting concordances and discordances.

First put the bands in order by the ranks of the first rater a1. So a1 goes
1-8. Rater a2 had a different ordering. The both agreed in band 1. but
rater a2 saw a1’s second best band as his 3rd best and a2 saw the 6th band
as his second best. Now we determines concordances and discordances.

a1←1 2 3 4 5 6 7 8
 a2←1 3 4 5 2 6 7 8
 ⍝ c=7 5 4 3 3 2 1 0 so c=25
 ⍝ d=0 1 1 1 0 0 0 0 so d= 3

So looking at the a2 numbers band 1 had 7 concordances(7 numbers after it
that were higher and 0 discordances(0 numbers after it that were lower).
For a2 band 2 had 5 concordances(5 numbers after it that higher) and 1
discordance(1 number after it that lower). Continuing for the other bands
and adding them all we get 25 concordances and 4 discordances. The Ktau
formula uses c and d like this. Ktau=(c-d)÷(c+d). The Ktau fns below does
this using a sub fns call cd in [1] which calls itself(using ∇) repeatedly
for each rank counting the numbers below that rank that are concordant or
discordant Both c and d are calculated by fns cd in [2] by calling it with
either < or > as the left argument. [3] calculated Ktau and counts samples
size(n1). [4] calculates significance level(z).

 ∇ Ktau←{⍝ c=concordant d=discordant
[1] cd←{1=⍴⍵:0 ⋄ (+/(1↑⍵)⍺⍺ 1↓⍵)+∇ 1↓⍵}
[2] c d←(<cd ⍵)(>cd ⍵)
[3] tau←(c-d)÷(c+d) ⋄ n1←×/¯2↑⍳⍴⍵
[4] tau,z←(3×tau×n1*0.5)÷(2×5+2×⍴⍵)*0.5}

 a1 Ktau a2 ⍝ so Ktau=(25-3)÷(25+3)=.7857
0.7857142857 2.721794126 ⍝ so Ktau=0.7857 z=2.7218

 ⍝ here is one more example

By Jerry Brennan Page 26 of 68 5/28/2020

b1← 1 2 3 4 5 6 7 8 9 10 11 12
 b2← 2 1 4 3 6 5 8 7 10 9 12 11
 ⍝ c=10 10 8 8 6 6 4 4 2 2 0 so c=60
 ⍝ d= 1 0 1 0 1 0 1 0 1 0 1 so d= 6
 b1 Ktau b2 ⍝ thus Ktau=(60-6)÷(60+6)=.8182
0.8181818182 3.702917599 ⍝ so Ktau=0.8182 z=3.7029

Linear Regression: compute Best Fit line from raw data ****
sd corr LinReg LinRegPlot
(see page 332 of Algebra 1 book) see also ch.Set 'Order'
Programs:sd:standard deviation corr:correlation Reglin:linear regression

 sd←{((+/(⍵-Mean ⍵)*2)÷¯1+⍴⍵)*0.5} ⍝ define program for standard deviation
corr←{ma mw←Mean¨⍺ ⍵ ⋄ (+/(⍺-ma)×(⍵-mw))÷((+/(⍺-ma)*2)*0.5)×((+/(⍵-
mw)*2)*0.5)} ⍝ define program for correlation
 RegLin←{'y=ax+b a=' 'b=' 'r=' 'r*2=',¨(⍵⌹⍺∘.*1 0),(⍺ corr ⍵)*1 2}

 R←x RegLinPlot y;yline;foot;a;b ⍝ define linear regression plot
 ch.Set'Head' 'Linear Regression Plot'
 a b←y⌹⌽↑1,¨x ⍝ determine regression line formula
 yline←(a×x)+b ⍝ get regression line points
 ch.Set'Footer'(x RegLin y) ⍝ get eq,r r*2 for footer label
 ch.Set'XYPLOT,GRID' ⍝ set up the plot
 ch.Plot⍉↑x yline ⍝ plot regression line
 #.ch.SetMarkers'Bullet' ⍝ ch.∆markers shows other symbols
 ch.Scatter⍉↑x y ⍝ data points as Bullets
 PG←ch.Close
 R←'View PG ⍝ to see it'

To create this fns type)ed RegLinPlot press enter & type above lines into
editor.

 X←0 1 2 3 4 5 ⍝ X raw data
Y←27.9 28.7 30.2 32.5 33.1 34.3 ⍝ Y raw data

 X RegLinPlot Y ⍝ do regression
View PG ⍝ to see it

By Jerry Brennan Page 27 of 68 5/28/2020

So the above equation is: Y=1.36X + 27.7 and correlation=.99

If you had only two points to plot this program would just find the perfect
line equation between the two points and the correlation would be 1.0. The
Domino (⌹) used in line [2] above is very powerful. It can be used to
solve multiple regression problems where you are fitting multiple sets of
data and nonlinear regression. It can also be used to solve sets of
simultaneous equations.

By Jerry Brennan Page 28 of 68 5/28/2020

Solve Set of Equations Easily with APL (Cons⌹Coefs) ****

Let me explain how Cons⌹Coefs in APL to solves simultaneous equations.

By Jerry Brennan Page 29 of 68 5/28/2020

This exact same method of solving equations is also used for Regression
Analysis upon which much of statistics is based. The Constants are the
dependent variable and the Coefficients are the independent variables used
to predict dependent variable. The Solutions is the prediction equation.
The ⌹ operator does it all in APL from simple regression to multiple and
nonlinear regression. Lets try a simple example first.

The Horse & Mule Problem1 (WORDS TO ALGEBRA TO APL) ***
Here’s a problem to translate from words to algebra to APL. A horse & a
mule, both heavily loaded, were going side by side. The horse complained of
its heavy load. “What are you complaining about?” replied the mule. “If I
take 1 sack off your back, my load will become twice as heavy as yours. But
if you remove 1 sack from my back, our loads will be the same.” Now wise
mathematician, 1st show me algebra then solve with APL for # sacks
for horse and mule?" Use: H=horse sacks and M=mule sacks.

If I take one sack, (from horse=H) H-1

my load (mule=M) M+1

will be twice as heavy as yours. 1) M+1=2(H-1)

But if you take one sack from my back(M) M-1

Your(H) load H+1

will be the same as mine. 2) M-1=H+1

We have reduced the problem to a system of 2 equations in 2 unknowns:
1) M + 1 = 2 (H - 1) 1) 3=2H+¯M
2) M-1=H+1

Now rearrange 1) & 2) for APL:
constants left & coefficients right 2) 2=¯H+M

Here’s APL code from previous section: Solutions←Constants ⌹ Coefficients

3 2⌹2 2⍴2 ¯1 ¯1 1 ⍝ APL Constants=3 2 Matrix Coefficients=2 2⍴2 ¯1 ¯1 1
5 7 ⍝ Solution: H(horse)=5 sacks and M(mule)=7 sacks.

So if mule took 1 sack from horse mule would have 8 & horse 4,
and if mule gave 1 sack to horse they would both have 6 sacks.

1
 From Algebra Can Be Fun by Ya I Pearlman 1936

By Jerry Brennan Page 30 of 68 5/28/2020

Linear Quad & Cubic Regression ***** reg←{x y←⍵ ⋄ y⌹x∘.*⌽0,⍺}
First some data for X and Y (used throughout the following examples)

 X←¯2 ¯1 0 1 2 ⋄ Y←0.25 0.5 1 2 4

 RegLin←{(⊂'y←(a×x)+b'),('a←' 'b←' 'r=' 'r*2=',¨⍕¨(⍵⌹⍺∘.*1 0),
 (⍺ corr ⍵)*1 2)} ⍝ define Linear Regression function(all one line)
 X RegLin Y ⍝ call Linear Regression function
y←(a×x)+b a← 0.9 b← 1.55 r= 0.93 r*2= 0.87 ⍝ linear results

 RegQuad←{(⊂'y←(a×x*2)+(b×x)+c'),('a←' 'b←' 'c←',¨⍕¨(⍵⌹⍺∘.*2 1 0))}
 X RegQuad Y ⍝ call quadratic regression function
y←(a×x*2)+(b×x)+c a← 0.29 b← 0.9 c← 0.98 ⍝ quadratic results

 RegCube←{(⊂'y←(a×x*3)+(b×x*2)+(c×x)+d'),
 ('a←' 'b←' 'c←' 'd←',¨⍕¨(⍵⌹⍺∘.*3 2 1 0))} ⍝ (all 1 line again)
 X RegCube Y ⍝ call cubic regression function
y←(a×x*3)+(b×x*2)+(c×x)+d a← 0.06 b← 0.29 c← 0.69 d← 0.98

Notice the similarity in the above 3 functions.
Regression coefficients Equation APL Domino Operator
Linear: a b y←(a×x)+b ⍵⌹⍺∘.*1 0
Quadradic only y←(a×x*2)+b ⍵⌹⍺∘.*2 0
Lin/Quadradic: a b c y←(a×x*2)+(b×x)+c ⍵⌹⍺∘.*2 1 0
Lin/Quad/Cubic a b c d y←(a×x*3)+(b×x*2)+(c×x)+d ⍵⌹⍺∘.*3 2 1 0
But there is a simpler way in APL. Since the 3 programs are so similar it
is possible to write one function that can do linear quadric and cubic and
actually it can go beyond cubic if you wish. Here is the function:

reg←{x y←⍵ ⋄ y⌹x∘.*⌽0,⍺} ⍝ does all types of simple regressions
 2⍕1 reg X Y ⍝ 1 is x1 linear regression
0.9 1.55 ⍝ a← 0.9 b← 1.55
 2⍕2 reg X Y ⍝ 2 is x2 quadratic regression
0.29 0.98 ⍝ a← 0.29 b← 0.98
 2⍕3 reg X Y ⍝ 3 is x3 cubic regress
0.24 1.55 ⍝ a← 0.24 b← 1.55

2⍕¨(1)(1 2)(1 2 3) reg¨ ⊂X Y ⍝ lin, lin & quad, lin & quad & cubic
0.9 1.55 0.29 0.9 0.98 0.06 0.29 0.69 0.98 ⍝ see 3 equations below
 ⍝ y=.9x+1.55 y=.29x2+.9x+.98 y=.06x3+.29x2+.69x+.98

If you wanted little better labeling of these equations pass them to this:
RegEq function
 RegEq←{⍺←⍳¯1+⍴⍵ ⋄ 1↓⊃,/(⊂'+('),¨((⍕¨⍵),¨(⊂'×X*')),¨(⍕¨⌽0,⍺),¨')'}

↑ lab RegEq¨(lab←(1)(1 2)(1 2 3))reg¨⊂X Y No 2⍕ so show all decimals
(0.9×x*1)+(1.55×x*0) ⍝ linear
(0.2857142857×X*2)+(0.9×X*1)+(0.9785714286×X*0) ⍝ lin/quad
(0.0625×X*3)+(0.2857142857×X*2)+(0.6875×X*1)+(0.9785714286×X*0)⍝ lin/q/cub

Any 1 these equations could be easily cut, pasted & compared in plotxy.

plotxy X (Y←(0.2857142857×X*2)+(0.9×X*1)+(0.978571486×X*0))⍝ lin/quad plot
View PG ⍝ to see it

By Jerry Brennan Page 31 of 68 5/28/2020

Actually any # of these equations could easily be plotted on the same plot.
An example of plotting more than one equation on the same plot follows with
automatic labeling of the lines also. All you have to do is enter your x
range and your equations on line below beginning with xandys.

Plotting 3 Exponential Functions to Compare ****
Here is some data for three exponential functions from page 521 of Algebra
I by McDougal Littell which I show you how to easily plot all at once.

X←¯3+⍳5 y1←2*X y2←3×2*X y3←¯3×2*X
¯2 0.25 0.75
¯1 0.5 1.5 ¯1.5
0 1 3 ¯3
1 2 6 ¯6
2 4 12 ¯12

Here is how this data for X range of ¯2 to 2(X←¯3+⍳5) and equations: y1 y2
y3 are computed inserting the X values into each of the equations
(⍎¨xandys). The text equations are put into the key for display in the
plot which is called in the 3rd line below(plotxy). This example plots 3
lines but any number of equations of any complexity to could be plotted.

 xandys←'X←¯3+⍳5' 'y1←2*X' 'y2←3×2*X' 'y3←¯3×2*X'
 ch.Set 'Key' (1↓⊃,/',',¨1↓xandys)
 plotxy ⍎¨xandys
View PG ⍝ to see it

By Jerry Brennan Page 32 of 68 5/28/2020

Plotting in General in APL *
There is a very extensive plotting library which can do virtually any plot
you want. In addition virtually everything can be customized. Fonts and
colors can be changed, multiple axes are available, plots can be placed on
top of each other, specific areas can be notated or colored etc. To see
examples of all of the above and more simply click on each of the following
commands. First load rainpro the press enter any of the lines below it.

)load rainpro ⍝ to load in the following graphics

 Samples.Slideshow 3 ⍝ Run through selected samples (with 3s delay)
 ActiveCharts.Active ⍝ Simple illustration of drawing a chart on a form
 ActiveCharts.Drill ⍝ Sample drill-down application with Dyalog Gui
 ActiveCharts.Edit ⍝ Sample data editor using draggable markers

Multiple Regression
In the previous examples there was one X variable, which predicted one Y variable. In the
simultaneous equation examples there was one perfect solution. In the linear, quadratic and cubic
models there was one X variable and we determined a best fit equation to predict Y. In multiple
regression there will be a number of different X variables that are used together to find a prediction
equation for Y. In multiple regression X is a matrix with different columns for different X variables all
used to predict the Y variable. What different people will wear tomorrow depends upon many things
such as their income, what they wore today, chance of rain, temperature, who they are trying to
impress, how steep the mountain is etc. The calculation in APL is basically the same. Lets look at an
example.

By Jerry Brennan Page 33 of 68 5/28/2020

Alien Attack *
The human flesh eating Martians are coming, but fortunately we have a very
expensive ray gun, which can destroy their one giant saucer. Unfortunately
the saucer is very elusive and the gun only destroys the saucer 1/3 of the
time. Fortunately a high paid consultant suggested that the solution is to
build 3 ray guns because 1/3 plus 1/3 plus 1/3 comes out to .9999 so 99.99%
of the time the saucer would be destroyed. Unfortunately this is not
correct. So we need your help to save the human race. If not 3 how many ray
guns would be needed to be 95% certain to save the human race?. What about
99% certain? I was a little bit nervous about this and being wrong might
have some huge negative consequences for us humans so I resorted to the
Monte Carlo technique. The trick is to translate this into APL code.

If 3 guns fired randomly using ?3 3 3 APL returns 3 random numbers between
1 & 3. Using 1 for a hit & 2 & 3 for misses gives us our 1/3 for each gun.

?3 3 3
2 1 2 ⍝ so the second gun destroyed the saucer but I noticed no 3’s

So this looks dangerous to me. So we need some more checking. I only want
to find 1’s so I modified my code a little.

1=⎕←?3 3 3 ⍝ ⎕← assigns random #’s to output and then 1= matches
3 1 2 ⍝ these are the random gun shots show by ⎕←
0 1 0 ⍝ this shows that gun 2 was=1 and it destroyed the aliens

Now all I really care about is if 1 or more guns=1 and aliens are dead so I
use ∨/ which, like +/ puts a plus between each number, ∨/ puts an or(∨)
between each number and result is 1 if gun 1 or gun 2 or gun 3 = 1

By Jerry Brennan Page 34 of 68 5/28/2020

otherwise ∨/ result is zero. So in examples below none of 3 3 2 = 1 so
result is 0. But in 2nd example one or more of 1 2 1 = 1 so result is 1.

 ∨/1=⎕←?3 3 3
3 3 2 ⍝ none of shots match 1
0 ⍝ so saucer gets through and earth is lost

∨/1=⎕←?3 3 3
1 2 1 ⍝ two shots=1
1 ⍝ so saucer definitely destroyed

Now lets create a program and run it a few times and average the results.

avg{∨/1=?⍵⍴3}¨1000000⍴3 ⍝ Remember avg←{(+/⍵)÷⍴⍵}.
0.704073 ⍝ so on average 3 guns kill saucer 70% of time.

The ¨1000000⍴3 makes up a million 3’s which are passed one at a time
using(¨) to the program to run 1 million times. ⍵ is the right argument to
the unnamed function, The 3 is for 3 guns in this case so ⍵⍴3 becomes 3⍴3
which becomes 3 3 3. (avg{1∊?⍵⍴3}¨?1000000⍴3 uses membership(∊) works too)

Lets try 4 guns and our fns using membership(∊). Is 1 a member of ?4⍴3

 avg{1∊?⍵⍴3}¨1000000⍴4 ⍝ 4 guns each hit saucer 1/3 of time.
0.802378 ⍝ 4 guns better but I want 95% or better.

Please figure out # guns needed to be 95% certain & let me know. Thanks!

Alien Attack Two *****
Wonderful we destroyed the saucer, but unfortunately the Martians came up
with a new strategy. They built a zillion(more or less) small saucers.
Fortunately they put an id number each saucer from 1 to N and we can see
some of saucers coming and can read the id numbers on some of those.
Unfortunately the id numbers are not in any particular order, they are
random and further they are in binary not the base 10 we are used to.
Fortunately APL has a built in function to change numbers from any base to
and from base 10 and I have an idea of a way to estimate N from a sample
(n) of random numbers from N.

First lets review number bases. In base 10 we have 10 digits for the first
10 numbers then we repeat using the same 10 digits like this:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 etc
In binary we only have two digits 0 and 1 so the repeating happens faster.
0=0 1=1 2=10 3=11 4=100 5=101 6=110 7=111 8=1000 9=1001 10=1010 11=1011
In APL decode (⊥) and encode (⊤) do these conversions and more for us.

First let’s decode(⊥) binary numbers to decimal.

2⊥1 0 ⍝ binary 10 notice spacing of 1 0
2 ⍝ decoded bin 10 decimal answer=2 (see above)

2⊥1 0 0 1 ⍝ binary 1001
9 ⍝ decoded 1001 decimal answer=9 (see above)

2⊥¨(1 0)(1 0 0 1) ⍝ do both numbers at once.
2 9

Decode(⊥) can work with other bases also for example days hours & minutes

24 24 60⊥1 2 45 ⍝ convert 1 day 2 hour and 45 minutes to minutes
1605 ⍝ (1day=24hr×60min)+(2hr×60)+45min = 1605 minutes

By Jerry Brennan Page 35 of 68 5/28/2020

And here’s an example assembling a decimal number from it’s components:

10⊥1 3 5 2 ⍝ we have 1 thousand 3 hundreds 5 tens 2 ones
1352 ⍝ which becomes 1352

Now let’s see how encode(⊤) works:(Note ⊤ needs multiple left side #’s)

10 10 10 10⊤1352 ⍝ break number 1352 back down into decimal parts
1 3 5 2 ⍝ means:1 thousand 3 hundreds 5 tens 2 ones

24 24 60⊤1605 ⍝ break 1605 minutes into days hours and mins
1 2 45 ⍝ 1 day 2 hours and 45 minutes

Now one further thing before we get on to the problem. In converting a
decimal number to binary we need to know how many 2’s to put to the left of
encode. The answer is: 1+the floor of the base 2 log of the number. In APL
this is found like this.

1+⌊2⍟9 ⍝ 1 plus floor(⌊)of base 2 log(⍟) of #
4 ⍝ so 9 is 4 digit binary number(as we saw above)

1+⌊2⍟1000000 ⍝ 1 million requires 20 digits.
20

So Here is how to do it for these two examples 9 and 1 million:

((1+⌊2⍟n)⍴2)⊤n←9
1 0 0 1 ⍝ 9 in binary 4 digits needed

((1+⌊2⍟n)⍴2)⊤n←1000000
1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 ⍝ 1 million in 20 binary digits

We will be using this a bit so lets make it easy and write a function.

Dec2Bin←{((1+⌊2⍟⍵)⍴2)⊤⍵}

Ok now lets get to work on the saucers. Lets assume there are 1 million
saucers (N=1000000) and we get the id’s for random 100 Saucers(n=100)

N←1000000 ⋄ n←100 or N n←1000000 100 would also work
id←Dec2Bin¨n?N ⍝ get 100 random id's from million & make binary

Now here’s the magic formula to predict N(the total # of saucers) from a
sample. In this case we already know N so we can see how well it works.
Here’s the formula in conventional math notation: Nest=(n+1)/n × Max(id)-1

Now the equation in APL with the added conversion from binary to decimal.

+Nest←(((n+1)÷n)×(⌈/2⊥¨id))-1 ⍝ Nest estimates N(total saucers)
996750.83 ⍝ pretty close to a million

Note max is ⌈/ and 2⊥¨id converts each bin id to decimal id. Finally an
extra set of parentheses is needed as APL goes right to left with no order
of operations rules so to make the subtraction(-1) goes last & rest needs
parentheses around it.

Now lets put all this together in a function that we can play with to see
if we can count the saucers with a smaller sample than 100. So lets put two
functions together into a third function so what we are doing is clear.

SaucEst←{(((1+⍴,⍵)÷⍴,⍵)×(⌈/2⊥¨⍵))-1} ⍝ est N ⍵=n random bin id’s
SaucDo←{SaucEst Dec2Bin¨⍺?⍵} ⍝ generate and estimate N
100 SaucDo 1000000 ⍝ call program ⍺=n(sample) ⍵=N(population)

984090.48 ⍝ estimate from n=100(actual=1 million)

By Jerry Brennan Page 36 of 68 5/28/2020

Now lets run it 500 samples of size 100 and get the average.

 avg 100{⍺ SaucDo ⍵}¨500⍴1000000
999218.1065
 avg 100{⍺ SaucDo ⍵}¨500⍴1000000
1000095.813

So on the average it is pretty much perfect. It’s unbiased, there is no
tendency to over or underestimate N. Now the other question we must answer
is, “Is it efficient?”. If we have to run it 500 times that is not too
good. We will be stuck at our telescope for a long time. Lets run some
smaller samples and see what happens but instead of average lets look at
variability using the Standard Deviation:

 sdev←{((+⌿(⍵-(⍴⍵)⍴avg ⍵)*2)÷(1↑⍴⍵)-1)*0.5} ⍝ avg sum sq div by mean
 sdev 10{⍺ SaucDo ⍵}¨500⍴1000000 ⍝ 500 samples size 10 each
87455.71697 ⍝ standard deviation
 sdev 10{⍺ SaucDo ⍵}¨500⍴1000000 ⍝ 500 samples size 10 each
91742.41377 ⍝ standard deviation
 sdev 100{⍺ SaucDo ⍵}¨500⍴1000000 ⍝ 500 samples size 100 each
9519.923639 ⍝ standard deviation
 sdev 1000{⍺ SaucDo ⍵}¨500⍴1000000 ⍝ 500 samples size 1000 each
1017.421925 ⍝ standard deviation
 sdev 10000{⍺ SaucDo ⍵}¨500⍴1000000 ⍝ 500 samples size 10000 each
100.0278067 ⍝ standard deviation

So bigger samples are more accurate. Can you see an even more specific
pattern? Lets divide SD by reverse of rounded sample sizes

 91742 9520 1017 100 11÷⌽10 100 1000 10000
0.91742 0.952 1.017 1 ⍝ decreasing factor of ~10

That is interesting. Each time I increase sample size by a factor of 10 the
variability decreases by a factor of ~10. Is this just chance? Lets test
this theory by trying one more even larger sample. Since the last one took
some time and I want try 100000 this time of course I will decrease the
number of trials by a factor of 10 from 500 to 50.

 sdev 100000{⍺ SaucDo ⍵}¨50⍴1000000 ⍝ 50 samples size 100000 each
10.60093385 ⍝ very consistent Ssdev decrease

Lets check as we did before.

 91742 9520 1017 100 11÷⌽10 100 1000 10000 100000
0.91742 0.952 1.017 1 1.1 ⍝ Looks good

So to summarize the estimation equation is unbiased, It does not over or
underestimate N. And if I increase the sample size by a factor of 10 the
variability of my prediction decreases by a factor of ~10.

So if I saw saucers with the follow binary id numbers how many total
Martian saucers is your best estimate.

1. (1 0 0 1)(1 1 0 0 0)(1 0 1 1)
2. (1 0 0 1)(1 0 1 1)
3. (1 0 0 0 1 1 0 0 0 1 1)(1 1 0 0 0)(1 0 1 1)(1 0 0 1 1 0 0 1 0 0)

And extra credit: what are all the above binary id numbers in decimal form?

Answers:

By Jerry Brennan Page 37 of 68 5/28/2020

1(9,24,11=31),2(9,11=15.5),3(1123,24,11,612=1402.75)
(SaucEst(1 0 0 1)(1 0 1 1))(2⊥¨(1 0 0 1)(1 1 0 0 0)(1 0 1 1))

Finally lets plot some data to see what variability looks like. So run it
10 times with each sample=20. The correct answer is 100 saucers. So 8 of 10
close but estimates of 90 & 93 are off. The avgerage is 97.9 Pretty good!

ch.Set 'Footer' (Z←'FreqPlot ⊃¨20 SaucDo ¨10⍴100') ⋄ ⍎Z

How Often Will Current Year ÷ By Your Age Be Even? *
This example taken from:
http://www.mathgoespop.com/2010/01/a-mathematical-new-years-game.html

Lets say you are 16 and the current year is 2014. Lets find out if in any
of the next 12 years your age divides evenly into the corresponding year.

ages←15+⍳12
 years←2013+⍳12

Now we could just divide years÷ages & look, but let APL select for us.
Compare years÷ages to floor(⌊)years÷ages to see where it’s even. Floor(⌊)
rounds down. So floor on an integer will = the number. For decimals this
will not be the case. 2=⌊2 but 2.3≠⌊2.3 because ⌊2.3 is 2 and 2.3≠2.
 (years÷ages)=(⌊years÷ages)
0 0 1 0 0 0 0 0 0 0 0 1 ⍝ 1=even result, else=0: (years÷ages)=(⌊years÷ages)

http://www.mathgoespop.com/2010/01/a-mathematical-new-years-game.html

By Jerry Brennan Page 38 of 68 5/28/2020

So 3rd and 12th years are even. Lets use these 1’s and 0’s to select those years:

((years÷ages)=(⌊years÷ages))/years
2016 2025

Or to see the ages:

 ((years÷ages)=(⌊years÷ages))/ages
18 27

Or with a little more fiddling both years and ages together:

 ↑(⊂(years÷ages)=(⌊years÷ages))/¨years ages ⍝ OR ↑(d=⌊d←÷/ya)/¨ya←years ages
2016 2025
18 27

Now lets create a program to do this and have it automatically check all ages
from you current age to age 100. ⎕TS returns today’s date and time and 1↑selects
the first part of it which is this year. So ⍺ is set to the years from current to
the year you will be 100. ⍵ is input by you and should be your current age. The
program has 2 lines separated by the ⋄. The first line sets up the ages and
matching years and the second line does the selection

EvenYrDivAge← {⍺←(1↑⎕TS-1)+⍳⍴ages←⍵+0,⍳100-⍵ ⋄ ↑(⊂div=⌊div)/¨⍺ ages (div←⍺÷ages)}

Lets try the program now. Say you are 16 and the date today is 2015.

 EvenYrDivAge 15
2016 2020 2025 2040 2050 2080 2100
 16 20 25 40 50 80 100
 126 101 81 51 41 26 21

So there are 7 years that a person who is 15 in 2015 will have an age that
divides the current year evenly. Those ages are 16, 20, 25, 40, 50, 80, and 100.
The last row above shows the other factor of the division. So for example
16×126=2016.

Are all Numbers of Form abcabc Divisible by 13? ***
How can that be? Most numbers are not divisible by 13. Lets check it out.

 123123÷13 ⍝ 123123 follows the abcabc format: a=1 b=2 c=3
9741 ⍝ yes that one is
 264264 813813 547547÷13
20328 62601 42119 ⍝ yes those 3 are

Lets write a program to test this out more thoroughly with 3 little fns.

 rand3u←{⍵?9} ⍝ make 3 unique random digits a b c with values 1-9
 dup2←{10⊥⍵,⍵} ⍝ duplicate a b c and smooshes them together: abcabc
 div13←{(⌊x)=x←⍵÷13} ⍝ x is # ÷ 13. now see if round down (⌊) of x=x

 div13 dup2 rand3u 3 ⍝ test it. remember apl works right to left
1 ⍝ 1 yes the abcabc # is evenly ÷ by 13

 div13 ⎕←dup2 ⎕←rand3u 3 ⍝ use output windows to see intermediates
2 5 8 ⍝ 3 random digits made by rand3
258258 ⍝ 3 digits duplicated and smooshed by dup2
1 ⍝ # ÷ 13 & compare to #’s floor 1=div by 13

 div13¨ ⎕←dup2¨ ⎕←rand3u¨ 3 3 ⍝ try it twice using each (¨)

By Jerry Brennan Page 39 of 68 5/28/2020

 9 5 9 5 3 7 ⍝ the two different a b c’s
959959 537537 ⍝ each duplicated & smooshed together
1 1 ⍝ each is evenly ÷ by 13

 +/div13¨ dup2¨ rand3u¨ 50000⍴3 ⍝ try 50,000 times & add up 1’s(+/)
50000 ⍝ all 50,000 #’s were divisible by 13

What if a b & c are not unique #’s? For example is 111111 divisible by 13.
Lets revise rand3u to allow non unique numbers & 0’s and try again.

 rand3←{¯1+?⍵⍴10} ⍝ creates random numbers that may not be unique
 rand3¨ 4⍴3
 2 1 8 6 1 1 0 6 1 5 8 5 ⍝ group 2 and 4 are not unique sets of #’s

⍝ group 3 will be 5 digit # 61061
 +/div13¨ dup2¨ rand3¨ 50000⍴3 ⍝ try with possible non unique a b c’s
50000 ⍝ 50,000 non unique are evenly ÷ by 13

What Is Your Name Worth? *
If each letter in alphabet was worth a different amount of points (A=1
B=2... Z=26, whose name would be worth the most points?

If A=1 B=2 C=3 . . . Z=26 then ABE would be worth 1+2+5=8 points.

In APL There is an system function ⎕A which returns the capital letters in
the alphabet. In boxes below boldface is APL, rest after ⍝ is comments.

 ⎕A ⍝ type ⎕A into APL session
ABCDEFGHIJKLMNOPQRSTUVWXYZ ⍝ and this comes back. Try it!

Now we can use dyadic index of(⍳) to find where in ⎕A different letters
are in a name (must be capitals).

 ⎕A⍳'ABE' ⍝ dyadic means 2: ⍳ has a left and right argument.
1 2 5 ⍝ so positions in ⎕A for ABE are A=1 B=2 E=5

Now a fns to get index numbers of letters & then add them up using +/:

 NAMSUM←{+/⎕A⍳⍵} ⍝ note APL goes right→left: finds indexes then adds
 NAMSUM 'ABE' ⍝ call fns NAMESUM pass it a name to index and add
8 ⍝ So ABE’s score is 8

Lets try on few names: (again remember they must be all capitals)

 NAMES←'JOHN' 'MARY' 'ROBERTA' 'VICTOR' 'TROY' ⍝ store names
 NAMSUM¨NAMES ⍝ call fns NAMESUM for each(¨) of the names in NAMES
47 57 79 87 78 ⍝ so VICTOR the fourth name wins.

Lets make a labeled table & bar graph so we can see the results better:

 +DATA←↑(NAMES)(NAMSUM¨NAMES) ⍝ make table. The + shows the table
 JOHN MARY ROBERTA VICTOR TROY
 47 57 79 87 78

Now put cursor on DATA & click Barchart icon on toolbar at top or enter:

By Jerry Brennan Page 40 of 68 5/28/2020

 FreqBar DATA

Rate Writing Based Upon Word And Sentence Length ***
First lets store some data in variable lincoln. Here is something he wrote:

If we could first know where we are, and whither we are tending, we could then better
judge what to do, and how to do it. We are now far into the fifth year, since a policy
was initiated, with the avowed object, and confident promise, of putting an end to
slavery agitation. Under the operation of that policy, that agitation has not only, not
ceased, but has constantly augmented. In my opinion, it will not cease, until a crisis
shall have been reached, and passed. "A house divided against itself cannot stand." I
believe this government cannot endure, permanently half slave and half free.

There're many ways to read data into APL. In this case the easiest way is
to use cut and paste, but text is too long so do this in two steps:.

 lincoln←'If we could' ⍝ type this and press enter.

Now open up edit window by double click on word lincoln & cut & paste
above text into window. Incidentally the edit window is very useful to add,
change, delete or just look at any information in any variable or program
you have already created. All you have to do is double click on its name.

First a fns to elim unneeded punctuation, but keep sentence end stuff .?!
 elim←{(~⍵∊⍺)/⍵} ⍝ fns to eliminate ⍺ chars from ⍵
 sam←',;:"'elim lincoln ⍝ eliminate (,;:") from lincoln and store in sam.
Notice that .?! are not in the list, so .?! will be left in for now.

Now fns to partition character strings into either words or sentences,
default partition by spaces(⍺←' '), so each partition contain 1 word so we
can count word length with (⍴). Keep program flexible so can also partition
by sentence end markers(⍺='.?!') so we can also count words in sentences.

 partition←{⍺←' ' ⋄ ⎕ML←3 ⋄ (~⍵∊⍺)⊂⍵}⍝ partition fns (default is words)
 ⍴sentence←'.?!' partition sam ⍝ sentence contains the sentences
6 ⍝ the ⍴ displays that there are 6 sentences

Now two fns: one to average word length & one to average number of words
per sentence in Lincoln’s speech. Steps: 1)eliminates all punctuation
including .?! first, then 2)partitions into words using the default
spaces, then 3)finds the size of each word and then 4)averages those sizes.

avgwordlen←{avg ⍴¨partition ',;:.?!"'elim ⍵} ⍝ elim .?! also here

By Jerry Brennan Page 41 of 68 5/28/2020

avgwordlen lincoln
4.447619048 ⍝ average word length for whole doc

Next fns 1)eliminates punctuation except .?! then 2)partitions into
sentences using .?! and then 3)partitions each sentence into words using
spaces, then 4)finds the number of words within each of the sentences(⍴¨)
then 4)exposes(⊃,/) the word counts for each of the sentences and then
5)finds the average number of words for the sentences.

avgsentlen←{avg ⊃,/⍴¨ partition ¨'.?!' partition ',;:"'elim ⍵}
avgsentlen lincoln

17.5 ⍝ average words per sentence

Now compare Lincoln and Shakespeare, using some text from Romeo and Juliet.
avgwordlen¨ lincoln romeo

4.447619048 4.135231317 ⍝ so Lincoln uses very slightly longer words
avgsentlen ¨ lincoln romeo

17.5 21.61538462 ⍝ but Shakespeare sentences are ~4 words longer

Stylometry: The analysis of text documents *****
Stylometry is often used to attribute authorship to anonymous or disputed
documents. It has legal, academic & literary applications, ranging from ?
of authorship of Shakespeare's works to forensic linguistics. (Wikipedia)

I will show some APL functions I created to analyze and compare different
authors. In section below I analyze/ compare first 6 chapters from Mark
Twain's Huckleberry Fin with 3 chapters from Mary Shelley's Frankenstein.

)load Anna3 ⍝ to access the Stylometry Fns first load Anna3
)cs Stylometry ⍝ then change to Stylometry namespace(subfolder)

A Good text data source www:gutenberg.org .Project Gutenberg offers 45,263
free ebooks to download. The easiest way to download is to go to
Gutenberg.org, find a .txt version of a book and display it. Then cut and
paste sections or chapters into character variables in Anna3.Stylometry
like this:

TwainHuckFin1←'xxx' ⍝ enter a line with your variable name
 ⍝ now double click on TwainHuckFin1
 ⍝ delete xxx and paste text in and press ESC
)save ⍝ now save it.

Then I put 9 chapter names in var called Txts. [see Txts in VARS section]

Once I have saved my sample text files, then I choose ways to compare them:
1. Compare average sentence length. (use APL: AvgSentLen)
2. Compare average word length. (use APL: AvgWordLen)
3. Compare vocabulary level. (use APL: VocLevel using 32 levels of
 Dunn-Rankin vocabulary test L1-L32)
4. Compare percentage of function words used. (use APL: PercentWords and
 file FUNCTIONWORDS(321 common function words).
5. Compare percentages of positive and negative words used. (use APL:
 function PercentWords with files PosWords(114) and NegWords(141).

1. Lets compare average sentence length for these 9 chapters: 6 from Twain
and 3 from Shelly. Shelly’s sentences tend longer, but it is not clear cut.

2⍕AvgSentLen¨⍎¨Txts

By Jerry Brennan Page 42 of 68 5/28/2020

 18.43 15.55 19.35 14.05 14.53 19.98 21.67 23.65 19.43

2. Lets compare average word length for these 9 chapters: 6 from Twain and
3 from Shelly. It looks like Shelly’s words are consistently longer with
Twain always in low 4’s and Shelly always in the low 5’s.

2⍕AvgWordLen¨⍎¨Txts
 4.20 4.30 4.29 4.15 4.28 4.14 5.16 5.19 5.11

3. Let’s compare Vocabulary level for these 9 chapters: 6 from Twain and 3
from Shelly. It looks like Shelly’s vocabulary level is much lower than
Twains except for Twain’s chapter 4 which was lower than all of Shelly’s.

2⍕VocLevel¨⍎¨Txts
 11.70 14.35 10.55 3.43 11.25 11.75 5.44 5.08 6.26

4. Let’s compare percentage of FUNCTIONWORDS for these 9 chapters: 6 from
Twain and 3 from Shelly. FUNCTIONWORDS is a variable of 321 words useful
in detection of different people's styles. Function words are the words we
use to make our sentences grammatically correct. Pronouns, determiners, and
prepositions, and auxiliary verbs are examples of function words. Words
such as: a, about, and, as, my, she, almost, before, and except are all
function words. http://myweb.tiscali.co.uk/wordscape/museum/funcword.html
Shelly’s use of function words is consistently much lower than Twains.

2⍕PercentWords¨⍎¨Txts
 59.82 59.09 59.50 57.12 58.56 60.02 52.38 51.81 53.13

Now one APL fns computes & labels all 6 Stylometrics(stored in variable
Fnames) for the 9 chapters(stored in Txts). [see VARS section below]

 Fnames StyTbl Txts
Text\Fns AvgSentLen AvgWordLen VocLevel FunctionWords PosWords NegWords
TwainHuckFin1 18.19 4.20 11.70 59.13 .76 1.90
TwainHuckFin2 15.55 4.30 14.80 58.31 .37 .73
TwainHuckFin3 19.35 4.29 10.55 58.86 .26 .64
TwainHuckFin4 14.05 4.15 3.43 56.49 .63 1.33
TwainHuckFin5 14.41 4.28 11.25 56.82 .54 1.01
TwainHuckFin6 19.98 4.14 11.75 59.15 .69 1.09
Frankenstein1 21.67 5.16 5.44 52.38 .74 .50
Frankenstein2 23.65 5.19 5.08 51.81 1.04 .25
Frankenstein3 19.43 5.11 6.26 53.13 .45 .53

---VARS --(USED BY FNS. In Anna3.Stylometry)------------------------

SYMB← '.?!`~@#$%^&*()_+-=[{]}\|;:",<>/0123456789'

FUNCTIONWORDS(321) words provide sentence structure but limited meaning.
Some examples follow:
 a about above after again ago all almost along already
 although always am among an and another any anybody
PosWords(114) words like:free easy lucky. NegWords(114) like:bad sad hurt

Txts←((⊂'TwainHuckFin'),¨⍕¨⍳6),((⊂'Frankenstein'),¨⍕¨⍳3) ⍝ clever way

Fnames←'AvgSentLen' 'AvgWordLen' 'VocLevel' 'PercentWords' ⍝ easy way

Fnames,←'PosWords PercentWords' 'NegWords PercentWords'

By Jerry Brennan Page 43 of 68 5/28/2020

---FNS (in Anna3.Stylometry) --

AvgSentLen←{avg⊃,/⍴¨partition¨(3↑SYMB)partition(3↓SYMB)elim ⍵}

AvgWordLen←{avg⊃,/⍴¨partition SYMB elim ⍵}

VocLevel←{avg(⊃,/⍴¨(⍎¨'L',¨⍕¨⍳32)FindWords¨⊂⍵)/⍳32}

PercentWords←{⍺←FUNCTIONWORDS ⋄ ⊃100×(⍴⍺ FindWords ⍵)÷⍴partition ⍵}

StyTbl←{⍉((1,1+⍴⍵)⍴(⊂'Text\Fns'),⍵)⍪(((⍴⍺),1)⍴⍺),((⊂8 2)⍕¨⍎¨⍺∘.,(' ',¨⍵))}

---UTILITY FNS (in Anna3.Stylometry) --

avg←{(+/⍵)÷⍴⍵} ⍝ average =sum of #s(+/) divided by(÷) # of numbers(⍴)
FindWords←{⍺←FUNCTIONWORDS ⋄ ((words)∊⍺)/words←partition case SYMB elim ⍵}

elim←{(~⍵∊⍺)/⍵} ⍝ elim unneeded SYMBOLS ⍺

partition←{⍺←' ' ⋄ ⎕ML←3 ⋄ (~⍵∊⍺)⊂⍵} ⍝ brk txt by ⍺ (ie spaces or periods)
 case←{res←⍵ ⋄ ⍺←0 ⍝ default low case ⍺:0=up2lower change ⍺=1=lower2up
 To From←{⎕UCS(⎕UCS ⍵)+¯1+⍳26}¨⍺⌽'aA' ⍝ find 26 lower & uppers
 (bool/res)←To[From⍳(bool←⍵∊From)/⍵] ⍝ change only letters up/down
 res ⍝ return modified string res
 }

Four Fun With Numbers *****
The follow are 4 fun/amusing math/number problems & their solution in APL.
Have fun and remember after you execute a line you can either put the
cursor on any of the variables created to see what they look like or type
their name on a line to see them displayed.

Find all 3 digit whole positive numbers whose digits are the same when
added or multiplied together.

Remember Encode(⊤) can be used to break numbers into digits like this:

 10 10 10⊤126 ⍝ to break up one 3 digit decimal number
1 2 6
 (⊂10 10 10)⊤¨34 126 ⍝ & this to break up 2 or more numbers at once
0 3 4 1 2 6

So here is the solution:

 ((+/¨d)=(×/¨d←(⊂10 10 10)⊤¨n))/n←99+⍳900
123 132 213 231 312 321

Find two positive numbers that have a 2 digit answer when their digits are
added together and a 1 digit answer when digits are multiplied together.

 ((10≤+/¨d)∧(10>×/¨d←(⊂10 10)⊤¨n))/n←9+⍳90
19 91

Find all two 2 digit whole positive numbers that have same answer when
their digits are multiplied together as when digits are divided by each
other.

 ((÷/¨d)=(×/¨d←(⊂10 10)⊤¨n))/n←9+⍳90 ⍝ seems logical but fails
DOMAIN ERROR ⍝ can’t divide by zero so.

So here is the fix. Need to turn digits around so 20 30 become 02 and 03
etc. the reverse symbol(⌽) will do this.

By Jerry Brennan Page 44 of 68 5/28/2020

 (b←(÷/¨d)=(×/¨d←⌽¨(⊂10 10)⊤¨n))/n←9+⍳90 ⍝ flip(⌽) each(¨) set digits
10 11 12 13 14 15 16 17 18 19 20 30 40 50 60 70 80 90

Find a 10 digit number containing each digit once, so that the number
formed by the last n digits is divisible by n for each value of n from 1-
10. For an easy example lets try 3 digits: 168 works because 1÷1, 16÷2, and
168÷3 all are evenly divisible with no residues(|) or decimal parts.

Let’s break this problem into steps we have to do:

1) get some unique random digits 0-9, (each digit only once)

2) break digits up in increasing pieces (1 16 168)

3) do the divisions by 1,2,3,..10, (1÷1, 16÷2, and 168÷3)

4) check if the answers have no remainders(residues(|)), and

5) make a function repeatedly call it until it finds an answer.

Now fiddle on your own, then look below at my 5 steps to the solution.

1) I can imagine at least two different ways to get the random numbers.

⍕10⊥¯1+3?10 ⍝ 3UniqueRand#1-10, -1(0-9), squish, make # to char
879

OR even easier way using built in ⎕D which ='0123456789' as characters.

 ⎕D[3?10] ⍝ 3 rand# with no replacement indices of ⎕D
251

2) Now break the char string into increasing pieces: '2' '25' '251'

1 2 3↑¨⊂'251' ⍝ take(↑) each(¨) of 1 2 3 on enclosed(⊂)'251'
2 25 251 ⍝ more general way (⍳3)↑¨⊂'251'

3) now do the divisions: actually find the residues or remainders (|).

 (⍳3)|⍎¨(⍳3)↑¨⊂'251'
0 1 2 ⍝ so remainders for 2÷1=0 25÷2=1 251÷3=2

4) Now check to see if each remainder(|) =0

0=(⍳3)|⍎¨(⍳3)↑¨⊂'251' ⍝ if remainder=0 result of(0=) is true=1
1 0 0 ⍝ so yes,no,no for 2÷1=0 25÷2=1 251÷3=2

 Now check to see if all remainders =0 (1=yes the remainder=0)

∧/0=(⍳3)|⍎¨(⍳3)↑¨⊂'251' ⍝ so check if all(∧/) 1’s(remainders=0)
0 ⍝ so no all remainders are not 0

5) Create function to do all the above

NDigit←{∧/0=n|⍎¨(n←⍳⍵)↑¨⊂c←⎕D[⍵?10]:⎕←c} ⍝ ⍵ is input ie 3

The fns is inside of {}. It’s name is Ndigit. The code to the left of the
: is called the guard. If the guard is true(1) The code to the right(⎕←c)
with be executed. In this case the passing number(c) will be displayed. If
the guard is false, the code to the result will not be executed and nothing
will be displayed. Now lets try it 10 times for the 3 digit number.

NDigit ¨10⍴3 ⍝ try 10 random 3 digit #’s. It finds 5 #’s
789 ⍝ so residuals all=0: 7÷1 78÷2 789÷3
801 ⍝ so residuals all=0: 8÷1 80÷2 801÷3
984 ⍝ so residuals all=0: 9÷1 98÷2 984÷3

By Jerry Brennan Page 45 of 68 5/28/2020

963 ⍝ so residuals all=0: 9÷1 96÷2 963÷3
024 ⍝ so residuals all=0: 0÷1 02÷2 024÷3

Now lets try the real problem with 10 digits. Warning there is only one
correct number and there are many numbers to test so it will take a lot of
runs. On my computer it took a number of minutes to find the 1 number. You
might work your way up from 1000 10 digit numbers using NDigit ¨1000⍴10.
Good luck. Tell me when you find it (hidden answer=4138006086-321458796).

Extra credit. If you think about it a bit, you may be able to eliminate
some numbers and design a fns that runs faster by selecting only certain
random numbers. Think for a minute and only then read my next sentence that
will give you one such hint. OK here is my hint. The last digit is the
tenth digit and that longest number must be divisible by ten and the only
numbers that are divisible by ten end in zero so that is what the last
digit must be. So in this case you could simply search for a nine digit
number using the numbers one through nine and then tack a zero on the end.
This should speed things up considerably. Can you create a special fns
called NDigit10 which will only do the 10 digit problem. The NDigit fns
above is of course more general and will do all problems from 1 to 10.

There are constraints on other digits also which could be used. There’s a
trade off as it will take more code and thought on your part but it will
strain the computer less. Best to allocate resources between your brain &
your computers brain to get job done most efficiently. You have a powerful
partner but you have skills it does not have. Together the two of you can
go very far. Alone neither of you will probably amount to a hill of beans.

How Many Draws To Get An Ace? ****
The following fns shows average # of draws to get an ace. The answer is
unexpected. The fns shows its lines of code as it runs. Here is the fns:

FirstAce;S;first;avg
 'The First Ace Problem from Fifty Challenging Problems in Probability'
 ' by Frederick Mossteller 1965 Harvard University'
 S←{⎕←⍵ ⋄ ⍎⍵} ⍝ utility to both show and execute a line
 'What is average number of cards to draw before getting an ace?'
 S'4?52 ⍝ The positions of four aces randomly placed in deck of 52 cards?'
 S'⌊/4?52 ⍝ Find 1st(min) of 4 new random ace positions in deck of cards.'
 S'first←{⌊/⍵?52} ⍝ Turn above code to fns to find first position of ace.'
 S'first 4 ⍝ Call it once to find position of first ace.'
 S'first ¨10⍴4 ⍝ Call 10 times, find position of 1st ace in 10 shuffles.'
 S'avg←{(+/⍵)÷⍴⍵} ⍝ Write fns to average results.'
 S'avg first ¨500000⍴4 ⍝ Call it 500,000 times and average results.'
 'So ~10.6 cards to draw to get an ace on the average.'
 'More than 500,000 fills the workspace so here is a little workaround.'
 S'avg{avg first ¨500000⍴4}¨10⍴0 ⍝ Avg of 500,000 10 times and avg that.'
 'Notice these details in the code:'
 ' 1: Unnamed fns: {avg first ¨500000⍴4} as called only once inline.'
 ' 2: The 10 zeros: (10⍴0) not used. They only make fns run 10 times.'
 ' 3: 10.6 probably not your bet to be average # of draws to get an ace.'
 ' 4: Can you modify fns to see avg # of draws to get any spade?'
 ' 5: Can you simplify fns to get avg # of throws of dice to get a 3 is?'

By Jerry Brennan Page 46 of 68 5/28/2020

And here is the fns both running and showing all its code:
FirsAce

The First Ace Problem from Fifty Challenging Problems in Probability
 by Frederick Mossteller 1965 Harvard University
What is average number of cards to draw before getting an ace?
4?52 ⍝ The positions of four aces randomly placed in deck of 52 cards?
48 20 51 5
⌊/4?52 ⍝ Find 1st(min) of 4 new random ace positions in deck of cards.
17
first←{⌊/⍵?52} ⍝ Turn above code to fns to find first position of ace.
first 4 ⍝ Call it once to find position of first ace.
2
first ¨10⍴4 ⍝ Call 10 times, find position of 1st ace in 10 shuffles.
13 2 19 13 22 27 20 16 8 17
avg←{(+/⍵)÷⍴⍵} ⍝ Write fns to average results.
avg first ¨500000⍴4 ⍝ Call it 500,000 times and average results.
10.59594
So ~10.6 cards to draw to get an ace on the average.

More than 500,000 fills the workspace so here is a little workaround.

avg{avg first ¨500000⍴4}¨10⍴0 ⍝ Avg of 500,000 10 times and then avg those 10 averages.
 10.5960054

Notice these details in the code:
 1: Unnamed fns: {avg first ¨500000⍴4} If you wanted to use it more you should name it.
 2: The 10 zeros: (10⍴0) not used. They only make unnamed fns run 10 times.
 3: 10.6 is probably not your bet to be the average # of draws to get an ace.
 4: Can you modify fns to see avg # of draws to get any spade?
 5: What would you do to get avg # of throws of dice to get a 3?
 6: Can you determine avg # draws to get both a 4&5 ?

Five Card draw Probabilities ****
1. If draw 5 cards what is probability of 1,2,3 or 4 aces?

{(+/{(+/(52↑4⍴1)[5?52])∊ ⍳4}¨⍵⍴0)÷⍵}1000000 ⍝ 1,2,3 or 4(∊⍳4)
0.34085 ⍝ ~ 34% for 1-4 aces if 1 million random deals

Now lets look at 1 or 2 or 3 or 4 aces individually:

 {(+/{(+/(52↑4⍴1)[5?52])∊ 1}¨⍵⍴0)÷⍵}1000000 ⍝ 1 ace(∊ 1)
0.29966 ⍝ 30% chance 1 ace

 {(+/{(+/(⊃,/4 48⍴¨1 0)[5?52])∊ 2}¨⍵⍴0)÷⍵}1000000 ⍝ 2 aces(∊ 2)
0.039946 ⍝ ~4% chance 2 aces

 {(+/{(+/((4⍴1),(48⍴0))[5?52])∊ 3}¨⍵⍴0)÷⍵}1000000 ⍝ 3 aces(∊ 3)
0.00171 ⍝ ~.1% chance 3 aces

 {(+/{(+/(4 48/1 0)[5?52])∊ 4}¨⍵⍴0)÷⍵}1000000 ⍝ 4 aces(∊ 4)
0.000016 ⍝ ~.002% chance 4 aces

Here is how it works. 4⍴1 makes 4 ones. 52↑ takes the 4 ones and pads with
48 zeros. (There are many ways to do this as I demonstrate above in each
example.)

Ones will be the hits and zeros the misses. 5?52 takes 5 random numbers
between 1 and 52 without replacement.

By Jerry Brennan Page 47 of 68 5/28/2020

The random numbers are used to index the 52 1's and 0's generated. If the
the random index numbers are between 1 and 4 a 1 will be selected(an ace)
otherwise it is not one of the first four aces and a 0 will be picked.

 These 5 selections(1 for each ace and 0 otherwise) are summed up and to
see if they are a member of (∊). The 1 million results(0=no 1=yes) are then
again summed and divided by the 1 million. Note there is a fns {} inside
another fns{} The inner fns runs 1 million times summing up the times
correct # aces are found in a million tries. The outer fns divides the sum
by 1 million to get the percent. Another note ¨⍵⍴0 passes 0 to the inner
fns 1 million times. The 0 is not used in the inner fns, it just causes the
inner fns to run 1 million times spewing out a 1 or 0 each time that is
then summed (+/) and divided by 1 million.

2. If draw 5 cards what is prob of 3,4,5 in a row of same suit.

 +cards←(52⍴⍳13)+(13/0 20 40 60) ⍝ create deck 4 suits 13 cards in each
1 2 3 4 5 6 7 8 9 10 11 12 13 21 22 23 24 25 26 27 28 29 30 31 32
 33 41 42 43 44 45 46 47 48 49 50 51 52 53 61 62 63 64 65 66
 67 68 69 70 71 72 73

Cards are created in more detail this time as I have to note different
suits and numbers to check for cards in a row in a certain suit. So first
suite (ace,2-10,jack,queen,king=⍳13). Subsequent suits are increased by 20
so each card has a unique number and each suit has each card increasing by
1. Note there is a gap between each suit(14-20, 34-40 and 54-60).
First we also need a fns to sort the drawn cards in order:

 sort←{⍵[⍋⍵]}

Now lets look for runs of 3 or more (ie 2 differences=1 for a run of 3, 3
diffs=1 for a run of 4 and 4 diffs=1 for a run of 5)

 2≤+/⎕←1=⎕←|2-/⎕←sort cards[5?52]
5 10 26 47 50 ⍝ shows(⎕) 5 randomly selected cards sorted
5 16 21 3 ⍝ shows(⎕) the 4 diffs between pairs of above cards(2-/)
0 0 0 0 ⍝ shows that none of differences =1
0 ⍝ shows that no sequence was longer than 2

Now lets take the shows(⎕) out and run it a million times

 {(+/{2≤+/1=|2-/sort cards[5?52]}¨⍵⍴0)÷⍵}1000000
0.037195 ⍝ ~3.7% of time will I get a run of 3 or more in the same suit.

Now lets look at runs for 3, 4 and 5 separately

 {(+/{2=+/1=|2-/sort cards[5?52]}¨⍵⍴0)÷⍵}1000000
0.035668 ⍝ ~3.6% runs of 3
 {(+/{3=+/1=|2-/sort cards[5?52]}¨⍵⍴0)÷⍵}1000000
0.001466 ⍝ ~.1% runs of 4
 {(+/{4=+/1=|2-/sort cards[5?52]}¨⍵⍴0)÷⍵}1000000
0.000013 ⍝~.0013% runs of 5

3. What are odds of something simple like 1 pair? This probability is
0.422569

By Jerry Brennan Page 48 of 68 5/28/2020

How would you go about this? (Hint: make each suit string equal)
http://www.math.hawaii.edu/~ramsey/Probability/PokerHands.html

An Optimal Stopping Problem: Dating For Dummies ****
How many should you date before deciding to marry next one better than
anyone you dated so far if you want best odds of getting best 1 or maybe 1
in top 10? Assume nd=# of total people you could date, s=# you date and
top=# of best people you would be willing to accept(1 if you want best, 2
if either of top 2 would be good enough etc.)

Here is the fns: The actual code is boldface. All the rest is comments.

dates←{ ⍝ each time fns called returns 1 if found good enough mate else 0
⍝ Chapter 20:An Optimal Stopping Problem or maybe Dating for Dummies
⍝ How many to date before picking a mate from book by Paul Nahin 2008
⍝ Digital Dice:Computational Solutions to Practical Probability Problems
⍝ or https://www.ted.com/talks/hannah_fry_the_mathematics_of_love#t-598603
⍝ Input and Output
⍝ return 1 if pick person in "top" range of sample "s" by picking first
⍝ date who is better than the best of "nd" people in the dated group.

nd←⍺ ⋄ s top←⍵ ⍝ nd=# dates s=sample size top=# of good enough dates
(s=0)∨(s=nd):top≥?s ⍝ if picked first or last date odds are: ~top/s
ranks←s?s ⍝ make random ranks for all dates. (1=best to s=worst)
bestdate←⌊/nd↑ranks ⍝ bestdate=lowest rank(nd↑ranks) of those dated
left←nd↓ranks ⍝ left=rest taking away those dated at beginning.
better←(left<bestdate)/left ⍝ better=1 or 0 for each left<bestdate
top≥1↑better,10000000 ⍝ 1 if 1st pick of better in top range else 0

⍝ sample probability runs:(only repeated run averages are really useful)
⍝ 2 dates 11 1 ⍝ nd=2 s=11 top=1, return 1 if best=(next date>first two)
⍝ following all call fns 10,000 times & average to get odds of success
⍝ next 2 from book show odds for 0 to 11 dates from total of 11 people
⍝ x,[1.5] {4⍕⊃avg ⍵ dates¨⊂11 1}¨10000⍴¨x←0,⍳10 ⍝ p94 table probabilities
⍝ x,[1.5] {4⍕⊃avg ⍵ dates¨⊂11 3}¨10000⍴¨x←0,⍳10 ⍝ odds if ok with top 3
⍝ next example s=1000, you date 7 various #'s (50×⍳7)[50 100 150...350]
⍝ x,[1.5] {4⍕⊃avg ⍵ dates¨⊂1000 20}¨10000⍴¨x←50×⍳7 ⍝ odds mate in top 20
}

On page 94 of Paul Nahin’s book there’s a probability table that the above
program will approximate. So let’s run it 10,000 times for each possible
number of dates and average results to get his table for each number of
possible dates. So if the number of all possible dates is nd=11 & you want
the very best person(top=1). What are the odds of you getting the best
person if you date 0,1,2,3,4,5,6,7,8,9, or 10 people before picking.

x,[1.5] {4⍕⊃avg ⍵ dates¨⊂11 1}¨10000⍴¨x←0,⍳10 ⍝ avgs 100,000 trials
 0 0.0913 ⍝ actual odds first person is best 1/s = 1/11 =.0909 9%
 1 0.2649
 2 0.3448 ⍝ odds improving but still better to keep dating
 3 0.3959
 4 0.3991 ⍝ best odds ~40% if date 4 then pick next 1 better than 1-4
 5 0.3777 ⍝ odds begin to decline ~38%. You should have picked sooner.
 6 0.3541 ⍝ 1/e=
 7 0.2994

By Jerry Brennan Page 49 of 68 5/28/2020

 8 0.2456 ⍝ <25% chance of finding best one
 9 0.1705
10 0.0906 ⍝ actual odds last person is best 1/s = 1/11 =.0909 9%

So if 11 people to date best odds of finding best 1 is date 4 then pick
next one better than any of first 4. But remember this is only best odds
~40%. ~60% of time you will miss very best one. Experiment seeing odds of
getting 1 of the top 2 or 3. Or imagine 1000 in dating pool. How many
should you date to get maybe 1 of the top 20. Running this program may not
be quite as much fun as dating but it's lots faster and bit cheaper than
having a couple hundred dates. Many decisions can be improved using this
method. Can you think of some? How about: finding/buying/selling/renting:
career, school, pet, house, apartment, car, bike. Anything that's gone once
you say no. Or maybe you figure you want to have children by age 35 and you
are now say 18. How many years should you date before you pick the next one
who is better than any you have dated so far. Here is the answer:

x,[1.5] {4⍕⊃avg ⍵ dates¨⊂17 1}¨100000⍴¨x←0,⍳17 ⍝ avgs 100,000 trials
 0 0.0587 ⍝ actual odds that first year is best 1/s = 1÷17 =.0588 5.88%
 1 0.2005
 2 0.2803
 3 0.3300
 4 0.3634
 5 0.3785
 6 0.3854 ⍝ best odds ~38% so date 6yrs then pick next 1 better than 1-6
 7 0.3824 ⍝ (for this simple case of picking the very best one there is
 8 0.3701 easier way to calculate based on e [the base of the natural
 9 0.3483 logarithms e=2.71828 or *1 in APL] simply do n×1÷e or in APL
10 0.3230 17×1÷*1 = 17×0.36787944117144233 = 6.25395049991452 so
11 0.2909 best odds is about 36.79% of the way(roughly 1/3 of the 17
12 0.2539 years or about 6 years it’s time to pick your partner)
13 0.2125
14 0.1637 ⍝ odds declining. You should have picked sooner.
15 0.1130
16 0.0576
17 0.0582 ⍝ actual odds that last year is best 1/s = 1÷17 =.0588 5.88%

By Jerry Brennan Page 50 of 68 5/28/2020

The twins problem (using math, Matlab and APL) ***
From : Wi l l You Be Al ive 10 Years From Now? by Paul Nahin 2014

A Very Fun Book of cur ious quest ions in probabi l i ty

In February 2008 I received a very interesting e-mail from Bruce C. Taylor, a professor of biomedical
engineering at the University of Akron. Bruce had just been reading my book, Duelling Idiots
(Princeton 2002), and that prompted him to write to me. Here's what Bruce wrote:

I have an interesting probability problem that I have not been able to solve and I am just
curious to see if you can come up with a solution. The problem came up when in one of our
classes here I was assigning lab groups using a random number generator. As it turns out
the class had 20 students, two of whom were related (twin sisters). Well, as luck would
have it, the two sisters ended up in the same lab group of four. I had divided the class into
five groups of four students. I, and a colleague, got to wondering what was the probability
that the two sisters would end up in the same group. I originally thought that this would be a
trivial problem but so far it has beaten me. I did write a MATLAB? program to solve the
problem via a probabilistic model and I came up with a probability of 0.16 after 100,000
repetitions. I think that this is the correct answer but I can't, for the life of me, arrive
anywhere near the same answer analytically. I thought maybe you'd like to take a crack at
it.

Well, who could resist that?
After a bit of thought I did arrive at a theoretical result, a rational fraction approximately
equal to 0.1579, and so I wrote back to Bruce to ask, "You said the [Monte Carlo] estimate was
0.16. Was it actually somewhat less?" Back came Bruce's response: "I ran the simulation three
times at 100,000 reps. each and came up with the following: (1) 0.1591, (2) 0.1570, (3)
0.1557." Not too bad an agreement with my fraction. I then wrote my own MATLAB? simulation
code, ran it for ten million repetitions, and got an estimate of 0.1579092, an even better
agreement with my theoretical fraction.

2.2 THEORETICAL ANALYSIS

To theoretically derive the answer to Bruce's question, here's what I sent him,, where (X
y) is, as in the

first problem, the binomial coefficient x!/(x — y)!y! , with x and y both non-negative integers and y≤ x.

First, to find the total number of ways (TNW) to randomly place 20 students into 5 groups of 4
each, imagine 5 bins. In the first bin we place 4 from 20, then 4 from the remaining 16 in the
second bin, then 4 from remaining 12 in third bin, and so on. Combination formula follows

×/4!20 16 12 8 4 ⍝ in APL 4 paired each # right of comb symbol ! then ×/ multiplies

Next, to find the total number of ways that the twins are together (TNWTT) in the same bin, we first
imagine that the twins are glued together. When we select a twin, we automatically select the other
one, too. There are 5 ways to place the glued twins into one of the bins, leaving 18 students. There are
(1

2
8) ways to select the 2 students who join the twins, leaving 16 students. We then finish the analysis

as before, that is

5××/2 4 4 4 4!18 16 12 8 4 ⍝ in APL

Note: ! is combination symbol ×/ multiplies all combinations 5× multiplies that result by 5

By Jerry Brennan Page 51 of 68 5/28/2020

Now the probability we are after is:

 = 3/19 = .15789….

(5×2!18)÷(4!20) = 0.15789473684210525 ⍝ Using APL combination symbol !

Note: !6 is factorial 6 & 2!6 is combinations of 6 taken 2 at a time.

Now, as easy as the above analysis may appear, an early reviewer of this book (Nick Hobson)
pointed out to me that there is an even easier way to see the result in a flash. A total of 20 lab slots
are to be filled, with 4 slots in each lab section. One of the twins, of course, has to be in some lab
section, leaving 3 slots in that section still available out of the 19 total slots that are still available. So,
the probability that our second twin gets one of those 3 slots (and so joins her sister) is 3/19. That's it!

2.3 COMPUTER SIMULATION

To write a Monte Carlo simulation, I found the following imagery helpful. (I wrote my simulation
code before receiving Nick's clever observation, so perhaps there is a better way to simulate—I'll
leave that for you to explore!) I stalled by visualizing the 20 students lined up in front of me in
some (random) order, standing in a row, shoulder to shoulder. Each holds a slip of paper. These
slips each have a single number on them; there's a 2 on each twin's slip, while all the other
students have a 1 on their slips. Starting at the far left (student 1), the first four students are
assigned to lab section 1, the next four students to lab section 2, and so on, with students 17
through 20 assigned to lab section 5. To simulate the placement of the twins into their lab
sections, all we need do is randomly generate two different integers from 1 to 20, integers that
determine the positions where the twins stand in the shoulder-to-shoulder row.

The simulation code can determine if the two twins have been assigned to the same lab section
by simply adding up the numbers, in each lab section, on the paper slips held by the students in
that section. If a lab section has neither twin, the group sum will be 4, while if a lab section has
one twin, the group sum will be 5. A group sum of 6, however, means we have a lab section that
contains both twins. This is the decision logic behind the simulation code twins.m. I make no
claims that twins.m is a superoptimal (in some sense) code, just that it is easily understood and
executes in a reasonably short time (ten million repetitions on my quite ordinary, bottom-of-the-
line computer required less than 23 seconds to run). After the code listing, I'll give you a quick
walkthrough of what each line is doing (the line numbers at the far left are not part of the code
but are included simply as reference tags for the walkthrough).

twins.m

01 together=0;
02 for loop1=1:10000000
03 lab=ones(1,20);
04 twin1=floor(20*rand)+1;
05 tw in2= tw in1 ;
06 while twin 1= =twin2
07 twin2=floor(20"rand)+1;
0 8 e n d
09 lab(twin1)=2;
10 lab(twin2)=2;
11 groupsum=zeros(1,5);
12 for loop2=1:5

By Jerry Brennan Page 52 of 68 5/28/2020

13 x=4*(loop2-1);
14 for loop3=1:4
15 groupsum(loop2)=groupsum(loop2)+Iab(x+loop3);
16 end
1 7 e n d
18 for loop4=1:5
19 if groupsum(loop4)= =6
20 together=together+1;
21 end
2 2 e n d
23 end
24 together/10000000

Line 01 initializes the variable together to zero; at the end of ten million simulations together will be
the number of simulations in which the twins were assigned to the same lab section. Lines 02 and 23
define the outer for/end loop that cycles the code through the ten million simulations. Line 03 defines
the row vector lab, with all of its 20 elements initially equal to 1. The value lab(k) is the number
written on the slip of paper held by the student in the kth row position. Initially, then, all 20 students
have a 1 on their individual slips of paper. Line 04 assigns twin1 equal to an integer value selected
at random from 1 to 20, and line 05 assigns the same integer to twin2. Since the two twins can't, of
course, have the same position in lab, lines 06 through 08 then continually assign twin2 a new
random integer value until twin1 and twin2 have different integer values. Lines 09 and 10 write a 2
on the slip of paper each twin holds, leaving the other 18 students holding slips of paper each with a
1. Line 11 initializes all five elements of the row vector group-sum to zero. The two nested loops
defined by lines 12 through 17 run through the 20 elements of lab, four at a time, from left to right,
and generate the five element values of groupsum. Finally, the two nested loops defined by •lines
18 through 22 check each element of groupsum and, if a value of 6 is detected (indicating both
twins are in the same section), then together is incremented by one. Once the ten million
simulations are finished, line 24 prints the code's estimate of the probability of the twins being in the
same lab section (0.1579092), an estimate very close to the theoretical value.

Now My 1 line of APL to compare to Nahim’s 24 lines of Matlab

 5×avg{1 1≡1 2∊4?⍵}¨10000000⍴20

0.157496

Let me explain the code. Apl works from right to left 10000000⍴20 creates
10 million 20’s. The each symbol ¨ calls the unnamed program between the
{} 10 million times passing it one 20 each time assigning the 20 to the
symbol ⍵. 4?20 finds 4 different random numbers between 1 and 20. Then
the 1 2∊ sees if each of the numbers 1 & 2 is a member of the set of 4
random numbers. If it is it returns a 1 otherwise it returns a 0. I have
chosen 1 and 2 as the id numbers for the twins so if there is a 1 and a 2
in the 4 numbers it means the twins are together in the first group. If
it returns a 1 0 or 0 1 it means only one of the twins was in the group.
If 0 0 it means neither of the twins was in the group. Finally match ≡
compares the two numbers to see if they match it’s left argument of 1 1.
If they match a 1 is returned otherwise a 0 is returned. So after the
program inside the {} runs 10 million times we have a string of 1’s and
0’s which are averaged by the avg program to see the proportion of times
the twins are both in the first group. If we had looked at 5 groups of 4

By Jerry Brennan Page 53 of 68 5/28/2020

people each time we would have found 5 times more matches so I multiplied
this number by 5 to get the expected percentage of times the twins would
have been in one of the 5 groups.

As you can see I cheated a little as the above example only looks at 1 of
the 5 groups and then multiplies the average by 5 to get Monte Carlo
estimate. So I am really doing 5 times less computation. If I change to
50 million instead of 10 million I get a workspace full error on my
computer. The APL program does the data as a vector instead of looping
around and around as Matlab does and thus requires all the memory at one
time. So to be fair I did 10 million runs 5 times to get my 50 million
here which is equivalent to the 10 million Matlab example. So here it is:

 5×avg{avg{1 1≡1 2∊4?⍵}¨10000000⍴⍵}¨5⍴20

0.1579035

I used this to compute the average avg←(+⌿ ÷ ≢) . For example: avg 4 5 6
is sum of numbers (⍵=4 5 6 and +⌿⍵=18) divided ÷ by number of numbers
(w=4 5 6 and ≢ ⍵=3), which is simply the sum of the numbers +⌿ divided ÷
by number of numbers ≢. Thus 18÷3=6 the average.

Here is another run with the apl program to compute the average included
in the one line APL program. It also shows that 50 million runs is
probably enough to get a pretty good estimates of the theoretical number
of .1579. Try APL yourself my website jerrymbrennan.com

 avg←(+⌿ ÷ ≢) ⋄ 5×avg{avg{1 1≡1 2∊4?⍵}¨10000000⍴⍵}¨5⍴20

 0.1579821

With APL there are a number of somewhat similar ways to compute this
percentage. Below are 4 different ways compared to see which is fastest
using a builtin timer program]runtime with 4 input strings of the 4
different methods. It looks like the above method tested first below using
membership ∊ is not the fastest though the fourth method using union ∩
only takes 5% less time. Reduction ∧/ and Plus Reduction +/ both seem to
take a bit longer.

Now below is a long one line APL call to util program]runtime passing it
the 4 method & below that are 4 result times compared:

]runtime '5×avg{1 1≡1 2∊4?⍵}¨100000⍴20' '5×avg{∧/1 2∊4?⍵}¨100000⍴20'
'5×avg{2=+/1 2∊4?⍵}¨100000⍴20' '5×avg{1 2≡1 2∩4?⍵}¨100000⍴20' -compare

 5×avg{1 1≡1 2∊4?⍵}¨100000⍴20 → 3.4E¯1 | 0% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕
* 5×avg{∧/1 2∊4?⍵}¨100000⍴20 → 3.9E¯1 | +12% ⎕⎕
* 5×avg{2=+/1 2∊4?⍵}¨100000⍴20 → 3.7E¯1 | +6% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕
* 5×avg{1 2≡1 2∩4?⍵}¨100000⍴20 → 3.3E¯1 | -5% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕

Now go to JMB.APLCloud.com where you can try all the APL examples or any
other APL you want. There’s also my 60 page pdf manual with many more
examples & many online tutorial, videos teaching APL, complete interactive
statistics package, links to getting educational APL free and 800 page free
download pdf APL manual. If questions please email me Jerry M Brennan PhD
at jbrennan@hawaii.rr.com or go to my website at jerrymbrennan.com

mailto:jbrennan@hawaii.rr.com

By Jerry Brennan Page 54 of 68 5/28/2020

Generate Numbers 1-10 From Digits 1-4 Using APL Symbols ****
Your assignment is to find APL symbols that operate on vector: a←⍳4 and
find a set of symbols that will generate each of the numbers 1-10 with the
fewest characters. For example: a[1] or 1⊃a would both work to generate 1.
The second one is preferred as it uses less characters(3 instead of 4).

HERE IS A PROGRAM I WROTE TO SCORE YOUR RESULTS.

 ScoreNumbers←{ ⍝ ⍵ rt arg is your trys ie '1↑a' '-/⌽a' etc
 ⍺←(⍳10)(⍳4) ⍝ default left arg is answers & #'s to use
 ans←1⊃⍺ ⋄ a←2⊃⍺ ⍝ answers & "a" values to use to get answers
 avg←{(+/⍵)÷⍴⍵} ⍝ define average fns
 try←,¨(⍴ans)↑⍵,500⍴⊂'¯99' ⍝ expand your trys to = the length of ans
 try←(¯1+try⍳¨'⍝')↑¨try ⍝ elim comments on lines
 r←⊂'1=right 0=wrong: ',⍕score←⊃¨ans=⍎¨try
 r,←⊂'Lengths of each: ',⍕⊃¨⍴¨try
 r,←⊂'# and % correct: ',(⍕n),7 2⍕100×(n←+/score)÷⍴score
 r,←⊂'Correct avg len: ',⍕avg⊃¨⍴¨score/try
 ↑r
 ⍝ ans for: (⍳20)(⍳4) ScoreNumbers one2four [#’s 1-20 using 1-4]
 ⍝ ans for: (0,⍳20)(4⍴4) ScoreNumbers fourfour [#’s 0-20 using 4 4 4 4]
 }

So if you had 3 answers done you could score it like this:

 Mytries←'1↑a' '-/⌽a' 'a[3]'
ScoreNumbers Mytries

1=right 0=wrong: 1 1 1 0 0 0 0 0 0 0
Lengths of each: 3 4 4 1 1 1 1 1 1 1
and % correct: 3 30
Correct avg len: 3.666666667

EXTRA CREDIT 1: Find the numbers 1-20. Change ScoreNumbers default left
argument in line1 to (⍳20)(⍳4) like this: (⍳20)(⍳4) ScoreNumbers Mytries
Note also the 0’s to fill unknowns if you are not sure of some of them.

 Mytries←'1↑a' '-/⌽a' 'a[3]' '0' '0' '0' '0' '0' '0' '0' '0' '×/2↓a'
 (⍳20)(⍳4) ScoreNumbers Mytries
1=right 0=wrong: 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Lengths of each: 3 4 4 0 0 0 0 0 0 0 0 5 3 3 3 3 3 3 3 3
and % correct: 4 20
 3 4 4 5
Correct avg len: 4 ⍝ my correct solution for ⍳20 was 7.7. can you beat it?

EXTRA CREDIT 2: Use as you input 4 4’s & find numbers 0-20. You must use
all 4 4’s to get each number. Here’s my answers(hidden in variable X). Can
you beat it?

(0,⍳20)(4⍴4) ScoreNumbers X
1=right 0=wrong: 1
Length of each:11 11 13 11 15 16 14 13 6 13 17 13 13 12 11 13 3 13 15 24 13
and % correct: 21 100
11 11 13 11 15 16 14 13 6 13 17 13 13 12 11 13 3 13 15 24 13
Correct avg len: 12.85714286

By Jerry Brennan Page 55 of 68 5/28/2020

GENERATE NUMBERS - SOME ANSWERS FOR: 1-20 USING ⍳4 AND 4⍴4
Possible answers for : First find #’s 1-20 using a←⍳4 (1 2 3 4)
(⍳20)(⍳4) ScoreNumbers one2four ⍝ use some or all digits repeats allowed

1↑a ⍝ 1
2⊃a ⍝ 2
3⊃a ⍝ 3
3↓a ⍝ 4
+/a[1 4] ⍝ 5
!/a ⍝ 6
+/2↓a ⍝ 7
×/a[2 4] ⍝ 8
*/1↓⌽a ⍝ 9
+/a ⍝ 10
(×/a[3 4])-1⊃a ⍝ 11
×/a[3 4] ⍝ 12
a[1]+×/a[3 4] ⍝ 13
a[2]×+/2↓a ⍝ 14
a[3]+×/2↓a ⍝ 15
(4⊃a)*2 ⍝ 16
a[1]+(4⊃a)*2 ⍝ 17
a[3]××/a[2 3] ⍝ 18
(*/a)+a[2]×*/1↓⌽a ⍝ 19
+/2/a ⍝ 20
Lengths of each: 3 3 3 3 8 3 5 8 6 3 14 8 13 10 10 7 12 13 17 5 avg=7.7

Possible answers for : Now find #’s 0-20 using a←4⍴4 (4 4 4 4)
(0,⍳20)(4⍴4) ScoreNumbers fourfour ⍝ note: You must use every 4 once.

+/(2↑a)-2↓a ⍝ 0
×/(2↑a)÷2↓a ⍝ 1
(÷/2↑a)+÷/2↓a ⍝ 2
(+/3↑a)÷3↓a ⍝ 3
a[1]+a[2]×-/2↓a ⍝ 4
(a[3]+×/2↑a)÷3↓a ⍝ 5
(+/!2↑a)÷+/2↓a ⍝ 6
(+/2↑a)-÷/2↓a ⍝ 7
-/⌽+\a ⍝ 8
(÷/2↑a)++/2↓a ⍝ 9
+/a[1]+a[2 3]÷4⊃a ⍝ 10
(+/3↑a)-⌊⍟3↓a ⍝ 11
(×/2↑a)-⌊/2↓a ⍝ 12
(+/3↑a)+⌊⍟4 ⍝ 13
(+/3↑a)+⌈⍟4 ⍝ 14
(×/2↑a)-÷/2↓a ⍝ 15
+/a ⍝ 16
(×/2↑a)+÷/2↓a ⍝ 17
(×/2↑a)++/⌊⍟2↓a ⍝ 18
(×/a[2 3])+(⌈⍟1↑a)+⌊⍟3↓a ⍝ 19
(×/2↑a)+⌊/2↓a ⍝ 20
Lens:11 11 13 11 15 16 14 13 6 13 17 13 13 12 11 13 3 13 15 24 13 avg=12.8

By Jerry Brennan Page 56 of 68 5/28/2020

WORKING WITH TABLES **
Company wants to compare actual & forecasts for 4 products for 6 months.

 Forecast←4 6⍴150 200 100 80 80 80 300 330 360 400 500 520 100 250 350
 380 400 450 50 120 220 300 320 350 ⍝ Forecast reshape(⍴) to 4x6 table

 Actual←4 6⍴141 188 111 87 82 74 321 306 352 403 497 507 118 283 397
 424 411 409 43 91 187 306 318 363 ⍝ Actual reshape(⍴) to 4x6 table

 Forecast
150 200 100 80 80 80
300 330 360 400 500 520
100 250 350 380 400 450
 50 120 220 300 320 350

 Actual
141 188 111 87 82 74
321 306 352 403 497 507
118 283 397 424 411 409
 43 91 187 306 318 363

 Forecast-Actual
 9 12 ¯11 ¯7 ¯2 6
¯21 24 8 ¯3 3 13
¯18 ¯33 ¯47 ¯44 ¯11 41
 7 29 33 ¯6 2 ¯13

 Forecast,¨Actual
 150 141 200 188 100 111 80 87 80 82 80 74
 300 321 330 306 360 352 400 403 500 497 520 507
 100 118 250 283 350 397 380 424 400 411 450 409
 50 43 120 91 220 187 300 306 320 318 350 363

 +fa←(⊂4 0)⍕¨Forecast,¨Actual ⍝ each col is 4 wide with 0 decimals
 150 141 200 188 100 111 80 87 80 82 80 74
 300 321 330 306 360 352 400 403 500 497 520 507
 100 118 250 283 350 397 380 424 400 411 450 409
 50 43 120 91 220 187 300 306 320 318 350 363

 (⊂4 0)⍕¨Forecast,¨Actual,¨Forecast-Actual
 150 141 9 200 188 12 100 111 ¯11 80 87 ¯7 80 82 ¯2 80 74 6
 300 321 ¯21 330 306 24 360 352 8 400 403 ¯3 500 497 3 520 507 13
 100 118 ¯18 250 283 ¯33 350 397 ¯47 380 424 ¯44 400 411 ¯11 450 409 41
 50 43 7 120 91 29 220 187 33 300 306 ¯6 320 318 2 350 363 ¯13

 ((⊂'Prod\Month'),⍕¨⍳1↑⍴fa),((⍕¨⍳1↓⍴fa),¨6⍴⊂':Fo Act')⍪fa ⍝ label rows & cols
 Prod\Month 1:Fo Act 2:Fo Act 3:Fo Act 4:Fo Act 5:Fo Act 6:Fo Act
 1 150 141 200 188 100 111 80 87 80 82 80 74
 2 300 321 330 306 360 352 400 403 500 497 520 507
 3 100 118 250 283 350 397 380 424 400 411 450 409
 4 50 43 120 91 220 187 300 306 320 318 350 363

By Jerry Brennan Page 57 of 68 5/28/2020

Plotting Regular Polygons **
R←PolyPlot(n s);y;x;y;foot;range;x0;y0;Deg2Rad;theta;i;radius;py;px;pct;area;apothem
 ⍝ n is # sides s=side length. So: PolyPlot 5 10 plots 5 sided polygon with each side=10
 Deg2Rad←{⍵×○1÷180} ⍝ fns to convert degrees to radians for input to trigonometric fns

 radius←s÷2×1○Deg2Rad 180÷n ⍝ center to a vertex 1○ is sine
 apothem←s÷2×3○Deg2Rad 180÷n ⍝ center to midpt side 3○ is tangent
 area←(n×s*2)÷4×3○Deg2Rad 180÷n ⍝ area of polygon 3○ is tangent

 x0←y0←0 ⍝ x y location of center of polygon on plot
⍝ see http://www.mathopenref.com/polygonregulararea.html for following formulas

 theta←(360÷n)×i←0,(⍳n-1),0 ⍝ theta is angle with the x axis plot based on # of sides (n)
 x←x0+radius×2○Deg2Rad theta+i×(2×○1)÷n ⍝ x vertice locations 2○ is cosine
 y←y0+radius×1○Deg2Rad theta+i×(2×○1)÷n ⍝ y vertice locations 1○ is sine

 ch.New 350 350 ⍝ trying to make x y lengths the same but failing
 ch.Set'Head'((⍕n),' Sided Polygon - side length is ',⍕s)
 ch.Set'Footer'(('Perimeter=',⍕n×s),(' Radius=',⍕4⍕radius),(' Apothem=',⍕4⍕apothem),('
Area=',⍕4⍕area))
 ch.Set¨(⊂¨'Xrange' 'Yrange'),¨range←⊂¯1 1×⌈/|x,y
 ch.Set¨('Xint' 0)('Yint' 0)('forcezero')('XYPLOT,GRID')
 ch.Set'style' 'surface'
 ch.Plot⍉↑x y
 PG←ch.Close
R←'View PG ⍝ to see it'

PolyPlot 3 10
View PG ⍝ to see it

PolyPlot 7 10
View PG ⍝ to see it

By Jerry M Brennan Page 58 of 68 5/28/2020

Plotting Any Triangle Given Some Sides & Angles **

By Jerry M Brennan Page 59 of 68 5/28/2020

By Jerry M Brennan Page 60 of 68 5/28/2020

NOTES FOR ALL TRIANGLE EQUATIONS AND APL SOLUTIONS *****
SYMBOLS USED: (http://www.mathsisfun.com/algebra/trig-solving-practice.html)
A B C are angles in degrees and a b c are side lengths opposite those
angles. Ar Br Cr are angles in radians which APL often uses. ○1 is
pi(π) in APL. A radian is a way of expressing an angle in terms of a
circle’s radius.
1 Radian=180°÷π. or about 57.2958 degrees(180÷3.141592654) & 57.29581× π =180 degrees

PRELIMINARY FORMULAS as programs:

DegToRad←{⍵×○1÷180} ⍝ ○1 is pi in APL, so DegToRad 57.2958 would result in 1
RadToDeg←{⍵÷○1÷180} ⍝ and RadToDeg 1 would result in 57.2958
sin←{1○DegToRad ⍵} ⍝ 1○ is sine fns in APL so sin 30 finds sine of 30deg
cos←{2○DegToRad ⍵} ⍝ 2○ is cosine so cos 45 finds cosine of 45deg
arcsin←{RadToDeg ¯1○⍵} ⍝ convert sine of angle in radians to angle in degrees
arccos←{RadToDeg ¯2○⍵} ⍝ convert cosine of angle in radians to angle in degrees

1)Triangle Angles Add to 180 degrees:
 If we have 2 angles we can get the 3rd because their sum=180.
 A+B+C=180 degrees so in APL C←180-A+B or B←180-A+C or C←180-A+B

2)Law of Sines:
 So if we have couple of angles and a side or a couple of sides and an angle
 we can find other side. (ie if we have A and a and B we can determine b)
(a÷sin A)=(b÷sin B)=(c÷sin C) or reciprocals:((sin A)÷a)=((sin B)÷b)=((sin C)÷c)

3)Law of Cosines:
(c*2)=(a*2)+(b*2) for right triangle
(c*2)=(a*2)+(b*2)-2×a×b×cos C for any triangle C in degrees

4)Area of a triangle:

area←×/0.5 a b(sin C) ⍝ or for a right triangle C=90° & sin 90 =1 so area =.5×a×b×1

So with these 4 basic formulas we can solve all triangle problems

HERE ARE 7 FUNCTIONS THAT SOLVE ALL POSSIBLE TRIANGLE PROBLEMS: A=angle S=side
TriAA TriAAA TriAAS TriASA TriSAS TriSSA TriSSS

EXAMPLE USAGE: capitals A B C are angles. Small letters a b c are side lengths
If a triangle had 3 sides: 3,4,5 do this:

 TriSSS 3 4 5 ⍝ Type in 3 sides(3,4,5) & get all angles & area info back.

By Jerry M Brennan Page 61 of 68 5/28/2020

If a triangle had 2 angles and a side 10 degrees 15 degrees and side 8.5 do this:

 TriAAS 10 15 8.5

If a triangle had an angle 10, then a side 8.5 and then an angle 15 do this:

 TriASA 10 8.5 15

 TriSAS 3 90 4 ⍝ this is right triangle so a*2 + b*2 = c*2

⍝ area is (a×b)÷2

By Jerry M Brennan Page 62 of 68 5/28/2020

TriSSA 3 4 37 ⍝ there are two possible solutions for this problem

There are a number of triangles which are impossible, angles cannot sum to more
than 180 degrees & one side cannot be longer than the sum of the other two sides.

 TriAAS 100 95 8.5
INVALID ∆ 2 input angles sum≥180: 100 95

 TriSSS 3 4 8 ⍝ impossible triangle c>a+b
INVALID ∆ (longest side)≥(sum other 2 sides):a b c= 3 4 8

Finally some combinations of angles and sides are not possible as indicated in
the example below where TriSSA finds imaginary numbers noted in APL with J.
TriSAS 3 90 4 is the 3 4 5 right triangle, but TriSSA 3 4 90 is impossible in two
different ways as is show below.

 TriSSA 3 4 90 ⍝ many other combs/orders of angles & sides are also invalid.
INVALID ∆ (imaginary side length(side with J in it:a b c= 3 4 0J2.6458 A B C= 90
90J¯45.5711 0J45.5711 area= 0J5.2915 [Alt 1]
INVALID ∆ (imaginary side length(side with J in it:a b c= 3 4 0J¯2.6458 A B C= 90
90J45.5711 0J¯45.5711 area= 0J¯5.2915 [Alt 2]

HERE ARE THE ACTUAL FUNCTIONS:

TriAA←{⍝ Triangle info given AngleAngle
 C←180-+/A B←⍵ ⍝ input: 2 angles A B
 in←(C<0)/'INVALID ∆ 2 input angles sum≥180:'
 in,'A B C=',A,B,C,'a b c area=Need at least 1 side to do more'}

TriAAA←{⍝ Triangle info given AngleAngleAngle
 in←(180≠+/⍵)/'INVALID ∆ 3 input angles not equal to 180:'
 in,'A B C=',⍵,'a b c area=Need at least 1 side to do more'}

TriAAS←{⍝ Triangle info given Angle Angle Side
C A c←⍵ ⍝ A C=angles c=side opposite angle C

 B←180-+/A C ⍝ missing angle B=180-(A+C)
 B<0:'INVALID ∆ 2 input angles sum≥180:',C,A

⍝ law of sines is (a÷sin A)=(b÷sin B)=(c÷sine C)
 a←(c×sin A)÷sin C ⍝ solve law of sines for a
 b←(c×sin B)÷sin C ⍝ solve law of sines for b
 area←×/0.5 a b(sin C) ⍝ .5×base×ht [ht=b×sin C]
 ('a b c=',(4 round a b c),'A B C=',(4 round A B C),'area=',4 round
area)TriPlotSSS a b c}

TriASA←{⍝ Triangle info given AngleSideAngle
 A c B←⍵ ⍝ A C=angles c=side opposite angle C
 C←180-+/A B ⍝ missing angle C=180-(A+B)
 C<0:'INVALID ∆ 2 input angles sum≥180:',A,B

By Jerry M Brennan Page 63 of 68 5/28/2020

⍝ recall law of sines: (a÷sin A)=(b÷sin B)=(c÷sine C)
 a←(c×sin A)÷sin C ⍝ solve sine law for a using C
 b←(c×sin B)÷sin C ⍝ solve sine law for b using C
 area←×/0.5 a b(sin C) ⍝ .5×base×ht [ht=b×sin C]
 ('a b c=',(4 round a b c),'A B C=',(4 round A B C),'area=',4 round
area)TriPlotSSS a b c}

TriSAS←{⍝ Triangle info given SideAngleSide
 a C b←⍵ ⍝ a=side1 C=angle between b=side2
 c←0.5*⍨(+/a b*2)-(×/2 a b)×cos C ⍝ c=sqrt(a2+b2 - 2ab×Cos C

⍝ Note: law of sines (sin A/a) = (sin B/b) = (sin C/c)
 SinAr←(a×sin C)÷c ⍝ solve sine law for sine A(in radians)
 A←arcsin SinAr ⍝ convert sine A in radian to angle in deg
 B←180-+/A C ⍝ missing angle B=180-(A+C)
 area←×/0.5 a b(sin C) ⍝ .5×base×ht [ht=b×sin C]
 ('a b c=',(4 round a b c),'A B C=',(4 round A B C),'area=',4 round
area)TriPlotSSS a b c}

TriSSA←{⍺←0 ⍝ Triangle info given SideSideAngle. There are 2 possible triangles
 a b A←⍵ ⍝ a=side opposite angle A b=side ⍝ Note: this program runs twice
 Ar←DegToRad A ⍝ convert A to radians

⍝ recall law of sines is : (a÷sin Ar)=(b÷sin Br)=(c÷sin Cr)
⍝ solve law of sines for sin b: sin b=(b×sin a)÷a

 SinBr←(b×sin A)÷a ⍝ solve sine law for sin of B(in radians)
 B←arcsin SinBr ⍝ convert sine of Br in radians to B in degrees
 B←(⍺+1)⊃B,180-B ⍝ pick B(⍺=0) or 180-B(⍺=1) for 2 possible b angles
 C←180-+/A B ⍝ ⍝ missing angle C=180-(A+B)
 c←(b×sin C)÷sin B ⍝ solve law of sin's for c=(b×sin C)÷sin B
 area←×/0.5 a b(sin C) ⍝ .5×base×ht [ht=b×sin C]
 ⎕←('a b c=',(4 round a b c),'A B C=',(4 round A B C),'area=',(4 round
area),'[Alt ',(⍺+1),']')TriPlotSSS a b c
 ⍺=0:1 ∇ ⍵} ⍝ call TriSSA (∇) again with same inputs(⍵) but ⍺=1 picks 180-B}

TriSSS←{⍝ Triangle solution given 3 sides
 a b c←⍵ ⍝ input: 3 sides
 ⍝ note:arccosine=¯2○ It converts cosine to angle in radians
 ⍝ recall cosine fns is: (a*2)=(b*2)+(c*2)-2×b×c×cosine Ar
 A←arccos((+/(b c)*2)-a*2)÷×/2 b c ⍝ Cosine function solved for A
 B←arccos((+/(c a)*2)-b*2)÷×/2 c a ⍝ Cosine function solved for B
 C←180-+/A B ⍝ missing angle C=180-(A+B)
 area←×/0.5 b c(sin A) ⍝ .5×base×ht [ht=c×sin A]
 ('a b c=',(4 round a b c),'A B C=',(4 round A B C),'area=',4 round
area)TriPlotSSS a b c}

Bingo ****
Imagine 5x5 Bingo game where Bingo numbers are determined by simple math(2
numbers added, subtracted, multiplied or divided). For example the caller
might say “2 times 4” and if you had an 8 on your board you would put an X
over the 8. What would be the best numbers(1-50 no duplicates) for you to
place on your board? Well add and subtract are unbiased but for multiply
and divide some numbers have more factors and thus will occur more often.
Lets find best numbers to put on your board so you can win the Bingo game.

factors←{(r=⌊r←⍵÷n)/n←⍳⌊⍵÷2} ⍝ fns to find all factors for a number.
factors 30 ⍝ call fns factors passing 30 into the program(⍵)

By Jerry M Brennan Page 64 of 68 5/28/2020

1 2 3 5 6 10 15 ⍝ these are the factors of 30

Let me explain the above factors program from right to left. ⍵ which is 30
is ÷2(since no factor can be greater than ½ the number). ⌊ rounds the
number down if it is a decimal and ⍳ makes the numbers from 1-15 and
stores them in n. r is ⍵(30)÷each n(numbers 1-15). ⌊rounds the results(r)
down and = compares each r to it’s rounded r. If r=⌊r the division must
have come out even and thus n must be a factor. The expression inside the
() will be 15 1’s and 0’s showing which values of n are factors of 30. The
syntax (r=⌊r)/n selects only n’s which have 1’s. Here 30÷1 2 3 … 15 has
even results for 1 2 3 5 6 10 15 which are the factors for 30.

Now lets find all factors for each(¨) number 1-50(⍳50). Then catenate(,)
factors with each(¨) of the numbers and make a table(⍉↑) for viewing.

⍉↑(⍳50),¨factors¨⍳50 ⍝ row 1 is the #, other rows are the factors
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
0 1 1 1 1 1 1 1 1
0 0 0 2 0 2 0 2 3 2 0 2 0 2 3 2 0 2 0 2 3 2 0 2 5 2 3 2 0 2 0 2 3 2 5 2 0 2 3 2 0 2 0 2 3 2 0 2 7 2
0 0 0 0 0 3 0 4 0 5 0 3 0 7 5 4 0 3 0 4 7 11 0 3 0 13 9 4 0 3 0 4 11 17 7 3 0 19 13 4 0 3 0 4 5 23 0 3 0 5
0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 8 0 6 0 5 0 0 0 4 0 0 0 7 0 5 0 8 0 0 0 4 0 0 0 5 0 6 0 11 9 0 0 4 0 10
0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 9 0 10 0 0 0 6 0 0 0 14 0 6 0 16 0 0 0 6 0 0 0 8 0 7 0 22 15 0 0 6 0 25
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 10 0 0 0 0 0 9 0 0 0 10 0 14 0 0 0 0 0 8 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 15 0 0 0 0 0 12 0 0 0 20 0 21 0 0 0 0 0 12 0 0
0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 16 0 0
0 0 0 0 0 0 0 0 0 24 0 0

Looking at the table we can see that 48 has the most factors and odd
numbers generally are much poorer than even numbers. Now lets put these
results in order by the number of factors(⍴). First lets get counts:

+m←⍉↑(⍳50),¨⍴¨factors¨⍳50 ⍝ row 1 is the #, row 2 is the # of factors
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
0 1 1 2 1 3 1 3 2 3 1 5 1 3 3 4 1 5 1 5 3 3 1 7 2 3 3 5 1 7 1 5 3 3 3 8 1 3 3 7 1 7 1 5 5 3 1 9 2 5

m[;⍒m[2;]] ⍝ Descending Sort(⍒) using row 2 of m to sort m
48 36 24 30 40 42 12 18 20 28 32 44 45 50 16 6 8 10 14 15 21 22 26 27 33 34 35 38 39 46 4 9 25 49 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 1
 9 8 7 7 7 7 5 5 5 5 5 5 5 5 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

In the above m is a matrix with 2 rows and 50 columns. m[rows;columns]. So
⍒m[2;] takes row 2 values of matrix & determines their reverse sort order.
48 36 24 30 40 42 12 18 20 28 32 44 45 50 16 6 8 10 14 15 21 22 26 27 33 34 35 38 39 46 4 9 25 49 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 1

so highest value is col 48 which is in this case 48. Worst value is in
column 1 which is 1. So now you can pick best values for your Bingo game
easily. I would suggest putting best values all in same row or column. So
your first row or column might be 48 36 24 30 40 and next row/column might
then be 42 12 18 20 28 etc. These would have highest odds of winning.
Now verify by testing if this is correct. Here’s fns that makes 3 different
Bingo cards(numbers with fewest, random or most factors) and then evaluates
them with random product numbers and sees which card wins(5 in row).

res←Bingo ss;FactorCalc;facts;boardL;boardM;boardR;calls;prods;RCMAX;n;z;bL;bR;bM
⍝ Evaluate 5×5 Bingo games with boards #'s 4-50 constructed in 3 ways:
⍝ 1)Least factors, 2)Most factors 3)Random #'s
⍝ show steps ss=(0:no 1:partial 2: play mode-full details and pause at each step)
⍝ use: +/5=⍎¨1000⍴⊂'Bingo 0' to test program 1000 times and show winner boards
⍝ Bingo calls are determined by multiplying 2 random numbers 2-25
 FactorCalc←{(r=⌊r←⍵÷nums)/nums←⍳⌊⍵÷2} ⍝ fns to determine factors
 facts←⊃,/⍴¨FactorCalc¨3+⍳47 ⍝ get factors for #'s 1-50
 boardL←5 5⍴3+⍋facts ⍝ 1)board with #'s with least factors (sort up)

By Jerry M Brennan Page 65 of 68 5/28/2020

 boardM←5 5⍴3+⍒facts ⍝ 2)board with #'s with most factors (sort down)
 boardR←5 5⍴3+25?47 ⍝ 3)board with #'s random(?) 4-50 no duplicates

⍝ n unique(∪) product(×/¨) #'s <50 from 5000 random(?) pairs of #'s (2-25)

 prods←×/¨calls←∪(50>×/¨calls)/(calls←1+?5000⍴⊂24 24) ⍝ gen random product Bingo calls
 calls←calls[prods⍳∪prods] ⋄ prods←∪prods ⍝ keep only calls with unique(∪) products
 RCMAX←{(⌈/+/⍵)⌈(⌈/+⌿⍵)} ⍝ fns:Row Col MAX: ⍵ is input i.e. 5×5 board
 ⍝ fns gets largest(⌈/) rowsum(+/) or colsum(+⌿)
 :For n :In ⍳⍴calls ⍝ loop :For each call:count each boards matches
 res←RCMAX¨(bL bR bM←boardL boardR boardM∊¨⊂n↑prods) ⍝ score each board for trial
 :If ss>0 ⋄ ' Least=' ' Random=' ' Most=' 'Hits for Trial=' '#=',¨res,n,calls[n]
 :EndIf
 :If ss>1
 ⍞←'Enter to see trial results or b:see full boards or q:quit ' ⋄ z←¯1↑⍞ ⍝ ask&wait
 '|',¨bL bR bM×boardL boardR boardM ⍝ show scored boards each step if ss>1
 :If z≡,'b'
 ' Least Factors Random# Factors Most Factors' ⋄ '|',¨boardL boardR boardM
 :ElseIf z≡,'q' ⋄ →0 ⍝ exit(go to zero) if response is "q"
 :EndIf
 :EndIf
 →0×⍳5∊res ⍝ exit(go to zero) if any board wins:row/col sum matches(∊) a 5 ⍝ to Play through
 :EndFor

Now lets play Bingo by trying the
Bingo fns a couple times.
 Bingo 1
Least= 0 Random= 1 Most= 1 Hits for Trial= 1 #=2 8
Least= 1 Random= 1 Most= 1 Hits for Trial= 2 #=2 3
Least= 1 Random= 1 Most= 1 Hits for Trial= 3 #=2 17
Least= 1 Random= 1 Most= 2 Hits for Trial= 4 #=11 4
Least= 1 Random= 2 Most= 2 Hits for Trial= 5 #=4 3
Least= 1 Random= 2 Most= 2 Hits for Trial= 6 #=3 16
Least= 1 Random= 2 Most= 2 Hits for Trial= 7 #=13 2
Least= 1 Random= 2 Most= 3 Hits for Trial= 8 #=9 4
Least= 1 Random= 2 Most= 3 Hits for Trial= 9 #=6 4
Least= 1 Random= 2 Most= 3 Hits for Trial= 10 #=3 7
Least= 1 Random= 2 Most= 4 Hits for Trial= 11 #=4 8
Least= 1 Random= 2 Most= 5 Hits for Trial= 12 #=2 21
1 2 5

Bingo 1
Least= 0 Random= 0 Most= 1 its for Trial= 1 #= 3 7
Least= 0 Random= 0 Most= 1 its for Trial= 2 #= 2 20
Least= 0 Random= 0 Most= 2 its for Trial= 3 #= 18 2
Least= 0 Random= 1 Most= 2 its for Trial= 4 #= 4 11
Least= 1 Random= 1 Most= 2 its for Trial= 5 #= 2 2
Least= 1 Random= 1 Most= 3 its for Trial= 6 #= 8 3
Least= 1 Random= 1 Most= 3 its for Trial= 7 #= 2 16
Least= 1 Random= 1 Most= 4 its for Trial= 8 #= 3 16
Least= 1 Random= 1 Most= 4 its for Trial= 9 #= 2 8
Least= 1 Random= 1 Most= 4 its for Trial= 10 #= 19 2
Least= 1 Random= 1 Most= 5 Hits for Trial= 11 #= 5 6
1 1 5

As you can see the board using
numbers with the Most factors won
both times. I tested this 1000
calls: +/5=⍎¨1000⍴⊂'Bingo 0' and
got:11 61 952. So Most wins (or
ties) 95.2%(952÷1000) of the time.

In the game originally described
not all calls are made from
multiplication. Some were also made
from addition, subtraction and
division. Addition would have bias
towards larger numbers while
subtraction would have bias towards
smaller numbers but overall
advantage for boards with more
factors would be smaller. What is
the bias for division?

If you call the program like this:

Bingo 2

It will play in an interactive mode
where you can watch each of 3
boards be scored at each step.

By Jerry M Brennan Page 66 of 68 5/28/2020

Writing Web page using APL Using Mildserver ***
An APL Class is created called Reverse. Automatic Code(MiPage & HTMLInput)
is included which does most of the work creating webpage & converting APL
to HTML in the Render fns. DoAction fns checks which Action button was
pressed Clear or Reverse & does what Submit Caption says: If ‘Reverse’
letters in Name reversed Name←⌽Name. If ‘Clear’ Name set to null Name←’’.

Below is Web Page before & after you press Reverse button. Notice reversed
text. If you pressed Clear button Text would be erased & pressing Home
changes webpage to the parent webpage. To see goto jerrymbrennan.com click
APL Apps on MiServer at bottom of page, then ALL then Simple MiPage with form.
Click the orange snake to see the above code and again to see below code.

By Jerry M Brennan Page 67 of 68 5/28/2020

APL References & Info About My Website And Access To It
For educational use you can get a free version of this APL at:
http://dyalog.com/ This includes everything. There are thousands of pages
of online manuals and tutorials describing everything available.

Eight Intro Dyalog APL education videos: Do APL101-APL108 first.
https://www.youtube.com/playlist?list=PL1955671BD6E21548

Online Dyalog APL tutorial with a sandbox where you can try out lines of
APL code such as from this tutorial except for the plotting things.
www.tryapl.org

Complete APL tutorial(not Dyalog specific) with a sandbox at:
http://aplwiki.com/LearnApl/LearningApl

Repository of articles, videos and tutorials about APL: http://aplwiki.com

Video shows Game of Life in APL. Video demos the amazing power &
conciseness of APL. http://www.youtube.com/watch?fmt=18&gl=GB&hl=en-
GB&v=a9xAKttWgP4

More educational videos at: http://www.youtube.com/user/APLtrainer

Extensive(800+ pages) Dyalog APL tutorial book you can download for free
http://dyalog.com/mastering-dyalog-apl.htm or
http://dyalog.com/uploads/documents/MasteringDyalogAPL.pdf

http://en.wikipedia.org/wiki/APL_(programming_language) A Programming
Language (APL). History and advantages of APL described.

Some information about Kenneth E. Iverson the inventor of APL. He was a
Harvard Mathematics Professor, worked for IBM and won a Turing Award for
creating APL. He first developed APL as a concise notation for mathematics.
Later he developed it as a comprehensive computer language.
http://en.wikipedia.org/wiki/Kenneth_E._Iverson

My APL Educational Web page. Goto: http://JMB.APLCloud.com or my web page
http://jerrymbrennan.com/ & click on APL Lessons using MiServer at page
bottom to see menu below of many interactive example APL web pages of
games, lessons and math and language utilities. Click orange dragon upper
left on every page to see actual APL code for that page & Home button takes
you back to main menu. Click Practice using live APL below to try all the
examples in this handout yourself or do anything else. Play numerous games,
watch videos, do many interactive tutorials and learn about your logical
thinking errors and then see the actual code that created everything. (SEE
NEXT PAGE FOR MAIN MENU Note: there are many submenus also)

http://dyalog.com/
http://www.youtube.com/user/APLtrainer
http://www.tryapl.org/
http://aplwiki.com/LearnApl/LearningApl
http://aplwiki.com/
http://www.youtube.com/watch?fmt=18&gl=GB&hl=en-GB&v=a9xAKttWgP4
http://www.youtube.com/watch?fmt=18&gl=GB&hl=en-GB&v=a9xAKttWgP4
http://www.youtube.com/user/APLtrainer
http://www.dyalog.com/MasteringDyalogAPL/MasteringDyalogAPL.pdf
http://dyalog.com/uploads/documents/MasteringDyalogAPL.pdf
http://en.wikipedia.org/wiki/APL_(programming_language)
http://en.wikipedia.org/wiki/Kenneth_E._Iverson
http://jmb.aplcloud.com/
http://jerrymbrennan.com/

By Jerry M Brennan Page 68 of 68 5/28/2020

